

 April 2011

Approaches to Improve
Web Application and Website Security

How to Secure
Your Website

5th Edition

IT SECURITY CENTER (ISEC)
INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN

Both English and Japanese edition are available for download at:

http://www.ipa.go.jp/security/english/third.html#websecurity (English web page)
http://www.ipa.go.jp/security/vuln/websecurity.html (Japanese web page)

Contents

Preface ... 2
Organization of This Book .. 3
Intended Reader .. 3
What is Revised in the 5th Edition .. 3
Fixing Vulnerabilities ... 4
㧙Fundamental Solution and Mitigation Measure㧙 ... 4

1. Web Application Security Implementation .. 5
1.1 SQL Injection .. 6
1.2 OS Command Injection .. 10
1.3 Unchecked Path Parameter / Directory Traversal ... 13
1.4 Improper Session Management ... 16
1.5 Cross-Site Scripting ... 22
1.6 CSRF (Cross-Site Request Forgery) .. 29
1.7 HTTP Header Injection .. 33
1.8 Mail Header Injection .. 37
1.9 Lack of Authentication and Authorization ... 40

2. Approaches to Improve Website Security .. 42
2.1 Secure Web Server .. 42
2.2 Configure DNS Security .. 43
2.3 Protect against Network Sniffing .. 44
2.4 Secure Password ... 45
2.5 Mitigate Phishing Attacks ... 47
2.6 Protect Web Applications with WAF ... 50
2.7 Secure Mobile Websites ... 56

3. Case Studies ... 63
3.1 SQL Injection .. 63
3.2 OS Command Injection .. 69
3.3 Unchecked Path Parameters ... 72
3.4 Improper Session Management ... 74
3.5 Cross-Site Scripting ... 77
3.6 CSRF (Cross-Site Request Forgery) .. 88
3.7 HTTP Header Injection .. 93
3.8 Mail Header Injection .. 94

Postface .. 97
References .. 98
Terminology ... 100
Checklist .. 101
CWE Mapping Table ... 105

Preface

2

Preface

Various websites provide a variety of services on the Internet. According to “Communications Usage

Trend Survey”1

Meanwhile, the number of security incidents exploiting “security holes” (vulnerabilities) in the websites

is also on the rise. Recently, they have become for-profit and are getting more vicious. More than 6,500

website vulnerabilities have been reported

, as of 2011, it is estimated that more than 90 million people use the Internet in Japan and

social interaction through the websites is expected to keep growing.

2

To maintain the safety of your website, you need to take appropriate security measures on each website

component. For operating systems or software, you could refer to the security practices common to all

users provided by the vendors and make sure to securely configure the settings or apply security patches.

Web applications, however, tend to be uniquely customized for each website and you need to secure each

web application accordingly. If any security problems are found in a web application already in operation,

it is usually difficult to fix them at the design level and you may need to settle for ad-hoc solutions.

Nevertheless, remember that the best solution is to try not to create security holes when developing a web

application in the first place and achieve the fundamental solution of “vulnerability-free” as much as

possible.

 to Information-technology Promotion Agency (IPA) since it

started receiving the reports in 2005. Especially, “SQL Injection” is one of the most popular vulnerabilities

reported and seen as a cause of personal information leakage via websites and virus infection of web pages.

This book makes use of vulnerability information on the software products and web applications

reported to IPA, picking up the vulnerabilities frequently called to attention or with serious impact, and

suggests the fundamental solutions and mitigation measures against them. In addition, it provides some

references on how to improve the security of the websites and a few case studies to illustrate where

developers may fail to secure web applications.

We hope this book will help you secure your website.

1 Communications Usage Trend Survey, Ministry of Internal Affairs and Communications (MIC),

http://www.soumu.go.jp/johotsusintokei/statistics/statistics05.html (Japanese Only)
2 Appointed by the Ministry of Economy, Trade and Industry (METI), IPA serves as a national contact to receive reports on

security vulnerabilities from the vendors and the general public. For more information, please visit:
http://www.ipa.go.jp/security/vuln/report/index.html (Japanese Only)

Preface

3

Organization of This Book

This book mainly covers the computer software security issues that IPA, as the reporting point and

analyzing agency designated in the Information Security Early Warning Partnership framework, has

regarded as “vulnerability”.

This book consists of three chapters.

Chapter 1 “Web Application Security Implementation” addresses 9 types of vulnerabilities, including

SQL injection, OS command injection and cross-site scripting, and discusses threats these vulnerabilities

may pose and the characteristics of the websites that might be most susceptible to these vulnerabilities. It

also provides fundamental solutions that aim to eliminate the vulnerability altogether and mitigation

measures that try to reduce the damage of attacks exploiting the vulnerability.

Chapter 2 “Approaches to Improve Website Security” addresses 7 topics, including web server security

and anti-phishing measures, and discusses how to improve the security of the websites mainly from

operational perspective.

Chapter 3 picks up 8 types of vulnerability addressed in Chapter 1 and presents case studies, illustrating

what may happen to the vulnerable websites with code examples, what is wrong with them and how to fix

them.

In the appendix of this book, you will find a checklist you could use to assess the security of your

website and a CWE mapping table.

Please note that each solution shown in this book is one example of many other possible solutions and

we do not mean to force the use of them. We have performed the simple tests to evaluate the effectiveness

of the solutions we provided in this book but we do not guarantee that they produce no unexpected side

effects in your environment. Please use this book as a reference to solve the security problems and take

appropriate action accordingly to your environment.

Intended Reader

The intended reader of this book is all of those who involved in website operation, such as web

application developers and server administrators, regardless of whether one is individual or organization.

Especially targeted at the web application developers who have just come to aware of the security issues.

What is Revised in the 5th Edition

In this edition, security issues for mobile websites are added to help understand the problems often faced

when designing a website and approaches to fix the problems.

Also, 2 case studies are added to those introduced in the 4th edition and the total of 8 case studies are

provided with the code examples to help understand what is wrong and how to fix it.

As for the content of each chapter, some changes, such as layout, have been made to improve readability,

but the content and its mapping with the checklist items are unchanged.

Preface

4

Fixing Vulnerabilities

ὼFundamental Solution and Mitigation Measureὼ

The outcome of security measures differ depending on what you do and what you try to achieve. You

could focus on the measures to eliminate the cause of vulnerability aiming at fundamental solution, or you

could focus on the attacking methods and prevent certain attacks, but you could be still vulnerable to other

types of attacks. Either way, what is important is that you correctly understand the nature of the measure

you have chosen to take and whether the expected result can be achieved with it.

In this book, we divided the web application security measures into two categories based on their nature:

“fundamental solution” and “mitigation measure”.

 Fundamental Solution ع

Fundamental Solutions discuss “the methods to realize vulnerability-free implementation”. By taking

fundamental solutions, you could eliminate vulnerabilities and thus expect to nullify the attacks

exploiting them.

 Mitigation Measure ع

Mitigation measures discuss “the methods to mitigate the damage of attacks”. They are different from

fundamental solutions because they do not eliminate the cause of vulnerability, but they reduce the

impact at each of the following phases, from the attack to its damage.

¾ Reduce the chance of being attacked

(e.g. do not give out clues that lead to enable attacks)

¾ Reduce the possibility that vulnerability is exploited when being attacked.

(e.g. Sanitize the data that can be used in attacks)

¾ Minimize the damage when vulnerability is exploited

(e.g. access control)

¾ Detect the damage promptly

(e.g. notification email)

Ideally, it is desired to implement fundamental solutions from at the design phase of a web application.

Because mitigation measures do not eliminate the fundamental causes of vulnerability, just implementing

mitigation measures is not desirable. Nonetheless, if fundamental solutions are not implemented perfectly,

mitigation measures can work as safety net. In some cases, the combined use of fundamental solutions and

mitigation measures may work well.

Likewise, when implementing vulnerability countermeasures to the web applications that are already in

operation, it is also desirable to implement fundamental solutions. But if it is not possible because of cost,

time or some other reasons, mitigation measures can work as a temporary measure.

Some mitigation measures may constrain the behavior of the expected functions. When applying

mitigation measures, you should take into account those possible side effects as well.

1.1 SQL Injection

5

1. Web Application Security Implementation

This chapter discusses the implementation of web application security, picking up the following nine

vulnerabilities3

, and shows threats each vulnerability may pose, what types of websites might be most

vulnerable, possible fundamental solutions and mitigation measures.

1) SQL Injection

2) OS Command Injection

3) Unchecked Path Parameter / Directory Traversal

4) Improper Session Management

5) Cross-Site Scripting

6) CSRF (Cross-Site Request Forgery)

7) HTTP Header Injection

8) Mail Header Injection

9) Lack of Authentication and Authorization

3 The numbering of the vulnerabilities reflects their severity or impact of possible attacks but does not indicate the priority

you should work on to secure your web site. The priority should be examined based on the environment and status of the
web site in question.

1.1 SQL Injection

6

1.1 SQL Injection

Most of web applications that use a database build an SQL statement (a command to operate the

database) based on user input. This means if the SQL statement-building process is not securely guarded,

attacking and manipulating the database would become possible. This issue is called “SQL Injection

vulnerability” and the attacking method exploiting this vulnerability is called “SQL Injection attack”.

ⅆ Possible Threats

This vulnerability could allow malicious attackers to:

- View sensitive data stored in the database

䊶 e.g. Disclosure of personal information

- Falsify and/or delete data stored in the database

䊶 e.g. Falsification of web pages, password change, system shutdown

- Bypass login authentication 4

All the operations permitted under the privileges of a login account become unauthorizedly

possible.

- Execute OS commands using stored procedures

䊶 e.g. System hijacking, making the target PC a bot (launching point) to attack others

ⅆ Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, a website may fall into a victim if a website

runs web applications that interact with database5

4 It will be discussed also in “1.3 Improper Session Management”.

. If the website uses the database that stores highly

sensitive data, such as personal information, extreme caution is called for.

5 Commonly used database engines are: MySQL, PostgreSQL, Oracle, Microsoft SQL Server and DB2.

SQL injection allows an attacker to manipulate the database with maliciously-crafted requests.

SQL Injection

Supply input that would
result in building a
malicious command

Send the command

Web application vulnerable
to SQL injection

Malicious
Attacker

Website

Database

Falsification
Information

Leak

Deletion

1.1 SQL Injection

7

ⅆ Reported Vulnerabilities6

SQL injection vulnerability is more popular than other vulnerabilities and accounts for about 14 percents

of website-related vulnerabilities reported to IPA during from the time it started receiving the reports to the

end of 2009. Software products, albeit fewer than websites, are also vulnerable to SQL injection and have

been reported to IPA as well. The following are some of those software products, which are now fixed

against this vulnerability.

䊶 MODx Evolution Vulnerable to SQL Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000008

䊶 Aipo Vulnerable to SQL Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000003

䊶 Movable Type Vulnerable to SQL Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000061

ⅆ Fundamental Solutions

Usually, the SQL has a mechanism to build an SQL statement using placeholders. It is a mechanism to

put a symbol (placeholder) at the place of the variables in the template of an SQL statement and replacing

it with an actual data value mechanically later. Compared to a method where a web application directly

builds an SQL statement through concatenation, the method that uses placeholders can eliminate the SQL

injection vulnerability since it builds an SQL statement mechanically.

The process of replacing a placeholder with an actual data value is called binding. There are two

binding methods: one is a method where an SQL statement is compiled keeping placeholders in it and the

database engine replaces them with their corresponding actual data values (static placeholder) and the

other is a method where the application’s database connection library performs escaping and replaces the

placeholders with their corresponding actual data value (dynamic placeholder). With the ISO/JIS

standard for SQL, the static placeholder is called the prepared statement.

Both methods will remove SQL injection vulnerability but the static placeholder is more secure since it

will eliminate the chance of SQL injection vulnerability in principal. For more information, see 3.2 of

this book’s supplementary volume, “How to Use SQL Calls to Secure Your Web Sites”.

When building an SQL statement through concatenation, insert a variable value in the SQL statement

6 For the latest information, please refer to: http://www.ipa.go.jp/security/vuln/report/press.html (Japanese Only)

㚧 When building an SQL statement through concatenation, use a

special API offered by the database engine to perform escaping

and make up the literals in the SQL statement correctly.

㚧 Build all SQL statements using placeholders.

1-(i)-a

1-(i)-b

1.1 SQL Injection

8

in the form of a literal. When inserting a value as the string type, you will bracket the value in single

quotes. In that case, you should perform escaping for the string literal to sanitize the special characters

(e.g. ‘ to ‘‘ and \ to \\). When inserting a value as the numeric type, makes it processed as a numeric literal

(e.g. casting it into the numeric type).

What should be done exactly is different depending on the type and settings of the database engine in

use and you should implement what it takes accordingly. Some database engines offer a special API7

This process should be performed not only for the values that may be affected by the external factors

but also for all literals that compose an SQL statement.

 that

generates a literal as a string. If your engine has one of those APIs, we recommend to use it. For more

information see 4.1 of “How to Use SQL Calls to Secure Your Web Sites”.

This may sound absurd but it did happen nevertheless and we feel we should warn you not to directly

write an SQL statement into the parameters, such as hidden, that are to be passed to the web application.

Specifying an SQL statement in a web application parameter directly could lead to a risk of someone

falsifying the value of the parameter and manipulating the database.

ⅆ Mitigation Measures

If an error message contains the information about database engine name or SQL statements which have

caused the error, then malicious users could get useful information for attacking the website. Error

messages can be used not only to give tips for attacking but also to show the result of an attack. It is

recommended not to show error messages related to the database operation on the user’s web browser.

If the privileges of the database account that a web application uses to access to the database is higher

than necessary, the damage the attack could inflict becomes more serious. Examine the commands the

web application needs to interact with the database and give the access account the minimum privileges

just enough to execute those commands.

By implementing these measures, security against SQL injection attacks is expected to improve. For

more information on SQL injection vulnerability and developing web applications that use database, you

7 Depending on the execution environment, some API is reported to have vulnerability where it does not perform escaping

correctly. In that case, apply security patch or use other measure.

㚧 Grant minimum privileges to database accounts.

㚧 Limit information to display in error message on the web

browser.

㚧 Do not write SQL statement directly in the parameter to be

passed to the web application.

1-(ii)

1-(iii)

1-(iv)

1.1 SQL Injection

9

could refer to the following documents as well.

ⅆ References

IPA䋺 How to Use SQL Calls to Secure Your Web Site
http://www.ipa.go.jp/security/vuln/documents/website_security_sql_en.pdf

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 䇸1. SQL 䉟䊮䉳䉢䉪䉲䊢䊮䇹
http://www.ipa.go.jp/security/vuln/vuln_contents/sql.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/sql_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸SQL ᵈ: #1 ታⵝ䈮䈍䈔䉎ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/502.html
(Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸SQL ᵈ: #2 ⸳ቯ䈮䈍䈔䉎ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/503.html
(Japanese Only)

IPA䋺 Information Security White Paper 2009 Part 2: 10 Major Security Threats – Attacking Techniques
Become More and More Sophisticated -)
http://www.ipa.go.jp/security/vuln/documents/10threats2009_en.pdf

IPA䋺 ᖱႎ䉶䉨䊠䊥䊁䉞⊕ᦠ 2008 ╙ 2 ㇱ 䇸10 ᄢ⢿ᆭ 䉁䈜䉁䈜ㅴ䉃䇺䈋䈭䈇ൻ䇻䇹
http://www.ipa.go.jp/security/vuln/20080527_10threats.html (Japanese Only)

1.2 OS Command Injection

10

1.2 OS Command Injection

Web applications can be vulnerable in such a way that they allow a remote attacker to execute OS level

commands via those applications. This issue is called “OS Command Injection vulnerability” and the

attacking method exploiting this vulnerability is called “OS Command Injection attack”.

ⅆ Possible Threats

This vulnerability could allow attackers to:

- View, falsify and delete files stored in the server

䊶 e.g. Disclosure of sensitive information, falsification of configuration files

- Maliciously manipulate the system

䊶 e.g. Unintended OS shutdown, adding/deleting user accounts

- Download and execute malicious programs

䊶 e.g. Virus, worm and bot infection, backdoor implementation

- Make the system a launching point to attack others

䊶 e.g. Denial of Service attack, reconnaissance and spamming

ⅆ Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, special attention is needed if a website runs

any web applications using the functions that are capable of calling external programs8

8 Examples of functions capable to call external programs:

.

Perl: open(), system(), eval()
PHP: exec(), passthru(), shell_exec(), system(), popen()

OS command injection allows an attacker to execute unintended OS commands on the web server
with maliciously-crafted requests, which could lead to leaking sensitive information or turning the
server into a bot (launching point) to attack others.

OS Command Injection

Attacker sends
Malicious request
containing OS
commands

Shell

File
Falsification

Attacking
Others

Virus
Infection

Unauthorized
Operation

Malicious User Website

Web application vulnerable to OS
command injection

Information
Leak

Execute
OS command

1.2 OS Command Injection

11

ⅆ Reported Vulnerabilities

OS command injection vulnerability is found mostly in the web application software written in Perl and

reported to IPA. The following are some of those software products, which are now fixed against this

vulnerability.

䊶 Webservice-DIC yoyaku_v41 Vulnerble to Command Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000060

䊶 Snoopy Command Injection Vulnerability

http://jvndb.jvn.jp/jvndb/JVNDB-2008-000074

䊶 Webmin OS Command Injection Vulnerability

http://jvndb.jvn.jp/jvndb/JVNDB-2007-000730

ⅆ Fundamental Solutions

Some programming languages used to write web applications have the functions that are capable to call

shell commands, such as the open() function in Perl. The open() function takes a file name as its

argument and specifying it with “| (pipe)” would call and execute an OS command. That tells it is

dangerous to allow external input to be used as its argument. You should avoid the use of these functions

that can call shell commands9

ⅆ Mitigation Measures

 and substitute other functions for them. If you want to write a program to

open a file in Perl, you could do it using the sysopen() without calling a shell command.

Check all variables to be used as parameter of the functions capable to call shell commands before

they are passed to the parameters to make sure that the system behaves in expected ways. The

recommended method is whitelisting, which makes a list of accepted string patterns for a certain

parameter and reject all others. If a parameter should be numeric, it will see if a string consists of only

numbers. If it finds that the string does not follow the permitted patterns, it will not pass the value to the

parameter and cancel the process.

Blacklisting, on the other hand, makes a list of string patterns likely to be used in OS command

injection attacks, such as “|”, “<” and “>” to rejected and permit all others, but this method has the risk

of missing should-have-been-banned items and hence not recommended.

9 See Corrective Measure #1䌾#3 in 3.2

㚧 When using functions which could call shell commands, check

all variables that make up the shell parameters and make sure

to execute only those that are granted to be executed.

㚧 Avoid using functions which could call shell commands.

2-(i)

2-(ii)

1.2 OS Command Injection

12

By implementing these measures, security against OS command injection attacks is expected to improve.

For more information on OS command injection vulnerability, you could refer to the following documents

as well.

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 5. OS 䉮䊙䊮䊄䊶䉟䊮䉳䉢䉪䉲䊢䊮
http://www.ipa.go.jp/security/vuln/vuln_contents/oscmd.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/oscmd_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉮䊙䊮䊄ᵈ᠄ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/501.html
(Japanese Only)

1.3 Unchecked Path Parameter / Directory Traversal

13

1.3 Unchecked Path Parameter / Directory Traversal

Some web applications allow to specify the name of files stored on the web server directly using external

parameters. If such web application is not carefully programmed, attackers may specify an arbitrary file and

have the web application execute unintended operations. This issue is called “Directory Traversal

vulnerability” and one of the attacking methods exploiting this vulnerability is called “Directory Traversal

attack”.

ⅆ Possible Threats

This vulnerability could allow malicious attackers to:

- View, falsify and delete files stored on the server

䊶 Disclosure of sensitive information

䊶 Falsification and deletion of configuration files, data files and source codes

ⅆ Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, a website may fall into a victim if a web

application allows to specify a filename directly using external parameters. If the web server stores

sensitive information, such as personal information, as files on the server, extreme caution is called for.

- Examples of web applications that would access the files on the server

䊶 Read web layout templates from the files

䊶 Write user input to a user-specified files

ⅆ Reported Vulnerabilities

Vulnerabilities related to path parameter account only a few percents of all website-related vulnerabilities

but keep coming up since we started receiving the reports. The following are some of the software products

If not careful, web applications that allow to specify a filename as argument could be exploited to
access the files not supposed to be viewed.

Unauthorized Access to Files
exploiting PathName Parameter

Contents of the secret.txt file
ὉPersonal Information (address,
name, telephone number)

ὉID, Password
Ὁetc.

Malicious
Attacker

Information
Leak

If not careful, web applications that allow to specify a filename as argument could be exploited to
access the files not supposed to be viewed.

Unauthorized Access to Files
exploiting PathName Parameter
Unauthorized Access to Files

exploiting PathName Parameter

Contents of the secret.txt file
ὉPersonal Information (address,
name, telephone number)

ὉID, Password
Ὁetc.

Malicious
Attacker

Information
Leak

1.3 Unchecked Path Parameter / Directory Traversal

14

with this issue reported to IPA. The vulnerabilities in these products are now fixed.

䊶 MODx Evolution Vulnerable to Directory Traversal

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000009

䊶 WebCalenderC3 Vulnerable to Directory Traversal

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000003

䊶 P forum Vulnerable to Directory Traversal

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000084

ⅆ Fundamental Solutions

When a web application allows a filename to be specified directly using an external parameter, an

attacker could manipulate the parameter specifying arbitrary files and view the file contents that should

not be disclosed. For example, in an implementation case where the name of a file stored in the web

server is specified in the hidden parameter and that file is used in the web page template, an attacker can

output arbitrary file as a web page by manipulating the parameter.

It is recommended that you review the application design and specifications, reconsidering whether it

is indeed necessary to allow to specify the name of files stored in the web server in external parameters

and alternative methods are available.

Suppose that you are to open a file called “filename” in the current directory and if the file-open

function is implemented like open(filename), an attacker could access an arbitrary file by specifying

the absolute path to the file. To prevent the use of absolute paths, you could use a fixed directory, such as

“dirname”, and code it like open(dirname+filename). However, just doing that still leaves rooms

for directory traversal attacks using “../”. To prevent it, you could use an API, such as basename(),

that extracts only the filename and removes the directory name from a given path like the following:

open(dirname+basename(filename))10

10 See Corrective Measure in 3.3.

.

㚧 Use a fixed directory to handle filenames and nullify directory

names in filenames.

㚧 Do not specify name of files stored on the web server directly

using external parameter.

3-(i)-a

3-(i)-b

1.3 Unchecked Path Parameter / Directory Traversal

15

ⅆ Mitigation Measures

If access permission to files on the web server is properly implemented and managed, the web server

may be able to prevent attack attempts when a web application tries to open a file in arbitrary directories.

When a filename contains the character strings that are used to specify an arbitrary directory, such as

“/”, ”../” and “..\”, cancel the process. Note that if you are using URL encoding and decoding, the

URL encoded values like “%2F”, “..%2F” and “..%5C” or double encoded values like “%252F”,

“..%252F” and “..%255C” can be interpreted as valid input values for a filename. Make sure to conduct

checking at the appropriate timing.

By implementing these measures, security against attacks abusing path parameters is expected to

improve. For more information on this vulnerability, you could refer to the following documents as well.

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 4. 䊌䉴ฬ䊌䊤䊜䊷䉺䈱ᧂ䉼䉢䉾䉪䋯䊂䉞䊧䉪䊃䊥䊶䊃䊤䊋

䊷䉰䊦
http://www.ipa.go.jp/security/vuln/vuln_contents/dt.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/dt_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊒䊨䉫䊤䊛䈎䉌䈱䊐䉜䉟䊦ᵹኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/402.html
(Japanese Only)

㚧 Check filenames.

㚧 Manage file access permission properly.

3-(ii)

3-(iii)

1.4 Improper Session Management

16

1.4 Improper Session Management

Some web applications issue session ID, which is the information to identify the user, to manage sessions.

If session ID is not created and managed properly, an attacker could steal the session ID of a legitimate user

and gain unauthorized access to the services pretending to be the legitimate user. The attacking method

exploiting this vulnerability in session management is called “Session Hijacking”.

Session IDᾉsid=abcd1236

Session IDᾉsid=abcd1236

Session IDᾉsid=abcd1235

Session IDᾉsid=abcd1234

Attacker tries to find a mechanism used to create the session ID and guess a valid session ID.

Guessing Session ID

1. Attacker
analyzes existing
session IDs and
assumes
a mechanism
used to create a
session ID

ᾂώAttacker guess a valid session ID and
pretend to be a legitimate user

Web
Application

Spoofing

2. Legitimate user logs in

Malicious
Attacker

User

Website

Web
Application

Attacker steals a legitimate user’s session ID by setting a trap and/or sniffing network.

Stealing Session ID

Session ID issued to the
user by the website

ᾁ-bώAttacker
captures
network packets
and steals the
session ID

Trap set up by
the attacker

ᾂώPretend to be the
legitimate user using
the stolen session ID

ᾁ-aώUser falls into
the trap and gives
away her session ID to
the malicious attacker

Spoofing

Session ID obtained
through the traps and
network sniffing

ᾀώLegitimate user logs inUser

Malicious
Attacker

Website

1.4 Improper Session Management

17

In addition to guessing or stealing session IDs, there is another attack exploiting improper session

management called “Session Fixation”. It occurs when an attacker prepares a session ID and has a target

user use the session ID in some way11

 and the target user who is unaware of it logs into the website. If

successful, the attacker could pretend to be the targeted user using his or her session ID, which has been set

up by the attacker, and access the website.

ⅆ Possible Threats

If an attack exploiting improper session management succeeds, an attacker could pretend to be a

legitimate user and do the operations permitted to that user. For example, it could allow to:

- Access the services normally available only for the users who have properly

logged in

䊶 e.g. Unauthorized money transfer, purchasing unintended goods, canceling the membership

against the user’s will

11 This becomes possible when session management is implemented in such a way that:

1. a web application uses the POST method and sets session ID in a hidden parameter to pass it around.
2. a web application sets session ID in a cookie and the user’s web browser is capable to set a cross-domain cookie, which

is an issue called “Cookie Monster” (*1).
3. a web application sets session ID in a cookie and the web application server is vulnerable to “Session Adoption” (*2).
4. a web application is vulnerable to cross-site scripting (discussed later in 1.5).

*1 “Multiple Browser Cookie Injection Vulnerabilities” http://www.westpoint.ltd.uk/advisories/wp-04-0001.txt
*2 “Session Fixation Vulnerability in Web-based Applications” http://www.acrossecurity.com/papers/session_fixation.pdf

Attacker makes a legitimate user use the session ID preobtained by the attacker and pretends to
be the user when the user logs in to the web site using that session ID.

Session Fixation

Web
Application

The session ID
issued to the
malicious attacker

ᾃ ώ Attacker’s session ID is
accepted and used by the
legitimate user

Spoofing

ᾀώAttacker obtains a session ID

ᾂώUser logs in using the session ID
sent by the malicious attacker

Malicious
Attacker

Website

User

ᾄώAttacker accesses
the website using his
session ID and pretends to
be the legitimate user

ᾁ ώ Attacker sends his
session ID to the
legitimate user and
makes the user use it

1.4 Improper Session Management

18

- Add and modify information normally permitted only for the users who have

properly logged in

䊶 e.g. Unauthorized change of application settings (passwords, administrator functions etc.),

writing inappropriate entries

- View information normally available only for the users who have properly

logged in

䊶 e.g. Unauthorized access to personal information, webmails, members-only bulletin board

ⅆ Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, special attention is needed with all the

websites that require user login. If the website offers sensitive services, such as making online payment,

ramification would be huge and extreme caution is called for.

- Websites offering online payment

䊶 e.g. Online banking, online trading, online shopping, online auction

- Websites dealing with not-to-be-disclosed/private information

䊶 e.g. Job-hunting websites, community websites, webmails

- Other websites that might offer login feature

䊶 e.g. Access to administrator functions, members-only bulletin board, blogs

ⅆ Reported Vulnerabilities

Reports related to improper session management account only a few percents of all website-related

vulnerabilities but it keeps coming up since we started receiving the reports. The following are some of the

software products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

䊶 e-Pares Vulnerable to Session Fixation

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000023

䊶 Active! mail 2003 Session ID Disclosure Vulnerability

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000076

䊶 Predictable Session ID Vulnerability in Serene Bach

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000035

ⅆ Fundamental Solutions

If session ID is generated using a simple algorithm, such as time-based one, it is easy for attackers to

㚧 Make session ID hard to guess.

4-(i)

1.4 Improper Session Management

19

predict what the next session ID would be12

When using a web application that offers the session management mechanism, as long as using the

mechanism, you do not have to generate session IDs on your won. It recommended not to develop a

mechanism to manage session ID but to use a web application product that offers the mechanism.

. If the session ID is obtained by an attacker, it allows the

attacker to pretend to be the legitimate user and gain unauthorized access to the services limited to the

legitimate user. Make a session ID generation algorithm harder to guess using a mechanism like pseudo

random number generators.

If session ID is set in a URL parameter, the user’s browser will forward the session ID-embedded URL

to the next website it is accessing through the Referer. If a malicious attacker intercepts it, s/he could

hijack the session. Store session ID in a cookie or hidden parameter using the POST method to pass it

around.

Some web application servers may automatically turn to use a URL parameter when the user’s browser

is set to reject cookies. In that case, changer the server settings and try to disable the feature.

The cookie has the secure attribute which lets the cookie set with this attribute be sent over HTTPS

only. If the secure attribute is not set, an HTTPS cookie can be sent over unencrypted HTTP channels as

well and attackers could obtain cookie information by sniffing the channels. When using HTTPS, make

sure to set the secure attribute. In addition, if you use a cookie in the HTTP communication as well,

create a new cookie, separate from the one used in the HTTPS communication.

Some web applications start a session issuing a session ID before the user logs in, possibly when the

user first accesses the website, and keep using the same session. This method, however, is vulnerable to

session fixation. You should avoid it and better start a new session after the user has successfully logged

in (manage the session with a new session ID). Make sure to disable the old session ID when replacing it

with the new session ID13

12 See Common Mistakes #1䌾#2 in 3.4

. This will ensure that a malicious person cannot access a session newly created

after the user logs in, even if the person tries to access it with the old session ID s/he has managed to

obtain.

13 When the pre-login session information needs to be succeeded by the post-login session, be careful about how to copy the
session information. If you shallow-copy an object variable, the pre-login session and post-login session will share and
refer to the same data, thus presenting a risk that a person using the pre-login session ID could access and falsify the
post-login session data. This risk itself can be vulnerability. You could take the deep-copy approach but some of the
problems still remain. We recommend that you disable the pre-login session when the user login is successfully done.

㚧 Start a new session after successful login.

㚧 Set the secure attribute of the cookie when using HTTPS.

㚧 Do not use URL parameter to store session ID.

4-(ii)

4-(iii)

4-(iv)-a

1.4 Improper Session Management

20

Issue a secret separate from the session ID and set it in the cookie after the user has logged in

successfully, and check whether the secret and the value in the cookie presented by the user’s browser are

the same at all web pages the user visits within the website14

In case of the following situations , this measure is unnecessary.

. Just like the Fundamental Solution 4-(i)

“Make session ID hard to guess”, use a secure mechanism, such as pseudo random number generators to

issue a secret, or encrypt it.

䊶 The fundamental measure 4-(iv)-a is being implemented.

䊶 A session ID is issued only after login in the first place.

ⅆ Mitigation Measures

If the session ID is fixed for each user, an attacker can perform session hijacking attacks anytime

without time limitation once the attacker obtains the session ID. Do not use a fixed session ID and create

a new session ID each time the user logs in.

A cookie is retained by the browser till its expiration date. If an attacker manages to steal cookies

exploiting the browser’s vulnerability, the attacker could gain access to all the cookies retained at that

time. When creating a cookie, set the expiration date appropriately.

For example, set a short expiration date and make sure that the browser does not retain the cookie

more than necessary.

If the cookie does not need to be retained, you could skip setting the expiration date (expires=), which

results in destroying the cookie when the browser is closed. This method may not yield the expected

result, however, if the user keeps using the same browser retaining the cookie along the way.

By implementing these measures, security against session hijacking attacks is expected to improve. For

more information on session management, you could refer to the following documents as well.

14 Some web application servers automatically take this approach.

㚧 Set the cookie’s expiration date with care when storing session

ID in cookie.

㚧 Use random session ID.

㚧 Issue a secret after login and authenticate the user with it

whenever the user moves around the web site.

4-(iv)-b

4-(v)

4-(vi)

1.4 Improper Session Management

21

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 6. 䉶䉾䉲䊢䊮▤ℂ䈱ਇ
http://www.ipa.go.jp/security/vuln/vuln_contents/session.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/session_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫 䇸䉶䉾䉲䊢䊮ਸ਼䈦ข䉍䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/302.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/303.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/304.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/305.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/306.html
(Japanese Only)

IPA䋺 䉶䉾䉲䊢䊮▤ℂ
http://www.ipa.go.jp/security/awareness/administrator/secure-web/chap6/6_session-1.html
(Japanese Only)

IPA䋺 䉶䉾䉲䊢䊮▤ℂ䈱⇐ᗧὐ
http://www.ipa.go.jp/security/awareness/administrator/secure-web/chap6/6_session-2.html
(Japanese Only)

↥ᬺᛛⴚ✚ว⎇ⓥᚲ 㜞ᧁᶈశ䋺 䇸CSRF䇹䈫䇸Session Fixation䇹䈱⻉㗴䈮䈧䈇䈩
http://www.ipa.go.jp/security/vuln/event/documents/20060228_3.pdf (Japanese Only)

1.5 Cross-Site Scripting

22

1.5 Cross-Site Scripting

Some web applications output a web page based on user input or HTTP header information, such as

search results, the user registration confirmation page, bulletin boards and web statistics reports. If this

process is not security-conscious, an attacker could embed malicious content, such as arbitrary scripts, into

the output web page. This issue is called “Cross-Site Scripting vulnerability” and one of the attacking

methods exploiting this vulnerability is called “Cross-Site Scripting attack”. It may not harm the website

itself but it would affect the safety of the visitors of the website.

 ⅆ Possible Threats

This vulnerability could allow malicious attackers to:

- Display a phony web page on the legitimate website

䊶 e.g. Confusion caused by false information

䊶 e.g. Disclosure of sensitive information through phishing attacks

- Steal cookies retained by the web browser

䊶 If session ID is stored in the stolen cookie, it could lead to spoofing15

䊶 If personal information is stored in the stolen cookie, the sensitive data would be disclosed.

15 The same problem mentioned in “Possible Threats” in “1.4 Improper Session Management”.

Web
application

If a web site has a vulnerability that may allow an attacker to feed arbitrary scripts into the web
application, the attacker could exploit it and execute malicious scripts on the user’s web browser.

Cross-Site Scripting

ᾂώApplication
outputs the
script-embedded
web page

Malicious
Attacker

User’s
web browserA booby-trapped

web site

ᾀ-aώUser visits
the website
unaware of the
trap

ᾀ-bώAttacker
sends an email
with a phony link

Website

Link

Link

User’s
email client

ᾁώUsers click the
link and send the
script-embedded
string unknowingly

ᾃώScripts are executed on the user’s
web browser

Cookie
Disclosed

Phony Web Page
Displayed

Script
Executed

ᾄώTargeted information
(e.g. cookie) is leaked

User

1.5 Cross-Site Scripting

23

- Make the browser save arbitrary cookies

䊶 Attacker could launch the session fixation attack making the user use arbitrary session ID16

ⅆ Websites That Need Special Attention

.

Regardless of what kind of website it is or who operates it, all websites should be cautious about this

vulnerability. If the website manages the login session using the cookie or includes the web pages that the

phishers tend to pick on, such as a login page and a user registration page asking for personal information,

extra caution should be taken.

- Web page features likely having cross-site scripting vulnerability

䊶 Provide user-input confirmation (e.g. login, user registration and survey)

䊶 Display the user input values to prompt the user to re-enter data after erroneous input

䊶 Show search results

䊶 Show error messages

䊶 Provide comment/entry feature (blogs, bulletin boards) etc.

ⅆ Reported Vulnerabilities

Cross-site scripting vulnerability is more popular than other website vulnerabilities and accounts for

about 40 percents of all the vulnerabilities reported during from the time IPA started receiving the report to

the end of 2009. Many software products have been also reported being vulnerable to cross-site scripting.

The following are some of those products, which are now fixed against this vulnerability.

䊶 EC-CUBE Vulnerable to Cross-Site Scripting

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000011

䊶 Cross-Site Scripting Vulnerability in Multiple Rocomotion Products

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000006

䊶 SGX-SP Final and SGX-SP Final NE Vulnerable to Cross-Site Scripting

http://jvndb.jvn.jp/jvndb/JVNDB-2011-000002

ⅆ Countermeasures

In this book, we divide the countermeasures against cross-site scripting vulnerability into three

categories based on the nature of the web application.

1) Measures for the web applications that do not permit HTML text input

2) Measures for the web applications that permit HTML text input

3) Measures common to all web applications

The web applications applicable to 1) would be those that offer the features which do not require the use

of HTML tags, such as search engine or user registration. Most web applications will fall under this

category.

16 For more information on “Session Fixation”, please refer to the page 17

1.5 Cross-Site Scripting

24

The web applications applicable to 2) could be those that require some freedom in terms of data

presentation, such as blogs or bulletin boards. For example, HTML text input may be permitted to

implement a function that lets the users choose the font size or color of the user entry.

Measures under the category 3) are required for the both types of web applications.

1.5.1 Measures for Web Applications That Do Not Permit HTML Text Input

ⅆ Fundamental Solutions

To prevent cross-site scripting, perform escaping for all web page elements, such as the contents and

the value of the HTML attributes. One way to implement escaping is to replace the special characters

used to control the layout of a web page, such as “<”, “>” and “&”, with the HTML entities “<”,

“>” and “&” respectively. If the web application needs to output the HTML tags, make sure to

enclose all attribute values in double quotation marks, then perform escaping by replacing the double

quotation mark contained in the attribute values with the HTML entity “"”.

In terms of vulnerability prevention, the data that must go through escaping process are input

character strings passed to the web application by the external entity, the values retrieved from database

or files and those generated from arithmetic operation on character strings. However, you could make

sure not to miss anything by taking more consistent approach where all text elements of a web page are

to go through escaping process regardless of whether it is necessary17

The output process that needs to include escaping process is not limited to that for the HTTP response.

When changing the contents of a web page dynamically, for example using the document.write

method in JavaScript or the innerHTML property, the same process is required.

.

A URL can start with not only “http://” or “https://” but also with “javascript:”. If a URL

of the resources or the images to be inserted into an HTML page is dynamically created based on the

external input, an attacker could launch cross-site scripting attacks by embedding a script into the URL.

For example, if a web application creates a HTML output page by setting a URL specified by the user

like , the attacker could insert a script by strings that start with “http://”

or “https:://” for the URL value. Take a whitelist approach where only the strings that start with

http:// or https:// are allowed for the URL value.

17 See 3.5.2.

㚧 When outputting URLs in HTML, permit only those that start

with certain patterns, such as “http://” and “https://”.

㚧 Perform Escaping for everything to be outputted to the web

page.

5-(i)

5-(ii)

1.5 Cross-Site Scripting

25

If the value for the <script> ... </script> tag is dynamically created based on the external input,

arbitrary scripts could be inserted in there. You could check and nullify risky scripts but it is

recommended not to let the application dynamically set the value for the <script> ... </script> tag

for it would be difficult to determine which scripts are indeed dangerous ones for sure.

 Scripts can be written into stylesheets using a function like expression(). That means that ڡ

malicious scripts can be inserted into the web page if the website design allows to import a stylesheet

from arbitrary websites. You could check the imported stylesheet and nullify dangerous scripts but you

would better not to let the application use external stylesheets for it would be difficult to clear them for

absolute sure.

ⅆ Mitigation Measures

Make the web application have a function to check input values and ask the user to re-enter when they

do not follow certain rules. Know that this cannot prevent a case where the input values are crafted to

generate a script string through arithmetic operation after they have passed the input check. Therefore,

you should not relay solely on this countermeasure.

1.5.2 Measures for Web Applications That Permit HTML text Input

ⅆ Fundamental Solutions

Parse the HTML text input and extract only the elements permitted in the predefined whitelist. When

implementing this measure, think it through carefully for it requires complex programming and the

processing load would be high.

㚧 Create a parse tree from the HTML text input and extract only

the necessary elements that do not contain scripts.

㚧 Check input values.

㚧 Do not allow to import stylesheets from arbitrary websites

㚧 Do not dynamically create the content of the <script>...</script>

tag.

5-(iii)

5-(iv)

5-(v)

5-(vi)

1.5 Cross-Site Scripting

26

ⅆ Mitigation Measures

Identify script strings included in HTML text input and nullify them. We recommend you nullify those

strings by replacing them with harmless strings. For example, if you would like to replace “<script>” or

“javascript:” with something harmless, you could add an character to those strings like “<xscript>”

or “xjavascript:”. Alternatively, you could delete script strings altogether but which may present a

new risk that removing them will put together a dangerous string in turn18

This measure poses the difficulty of extracting all the dangerous strings for sure. Because some web

browsers interpret a string like “java	script:” or “java(linefeed)script:” as

“javascript:”, a simple pattern matching would not do the job. Thus, it is not recommended to relay

on this kind of blacklist approach.

 and is not recommended.

1.5.3 Measures common to all web applications

ⅆ Fundamental Solutions

You can set the character code (charset) in the Content-Type filed of the HTTP header like:

“Content-Type:text/html; charset=UTF-8”. When the charset parameter is absent from the

Content-Type header field, the browser assumes the character code based on its own rule and

processes the strings with the assumed character set to display them on the web browser. For example,

some browsers are known to use a particular character code when the first part of the HTML text

contains a certain character string.

If the charset is not specified, an attacker could exploit this browser behavior, have the browser choose

the particular character set intentionally by inserting the certain character string and embed the character

strings that would emerge as scripts when they are processed with that character set.

For example, if the character string

“+ADw-script+AD4-alert(+ACI-test+ACI-)+AdsAPA-/script+AD4-” is inserted into the

HTML text, some browsers would recognize it as a string encoded by UTF-7. If this string is processed

using UTF-7, it becomes “<script>alert(‘test’)</script>” and the script will be executed.

Even if you do perform escaping discussed in 5-(i) and take the countermeasures against cross-site

scripting vulnerability properly, the characters shown above, such as “+ADw-”, will not be escaped since

those characters are processed by the web application set with other character codes, such as UTF-8,

EUC-JP or SHIFT_JIS, and not recognized as something that should be escaped.

To prevent this problem, you could perform another escaping for the HTML text assuming it is

18 See Common Mistake #2 in 3.5.3.

㚧 Set the charset parameter of the HTTP Content-Type header.

㚧 Nullify script strings in HTML text input.

5-(viii)

5-(vii)

1.5 Cross-Site Scripting

27

encoded by UTF-7 as well, but assuming only UFT-7 is insufficient. There would also be some side

effects that the UTF-7-based escaping may replace a legitimate character string not to be escaped in other

character codes and interfere with the normal operations.

Thus, to solve this issue, it is effective to make sure to specify the charset parameter without omitting

it. Set the character code that the web application intends to handle the character strings when outputting

HTML pages in the Content-Type of the accompanying HTTP header19

ⅆ Mitigation Measures

.

“HttpOnly” is an attribute you can set on the cookie and will deny the scripts within HTML text

access to the cookie. This will prevent the cookies from being stolen even if the website has cross-site

scripting vulnerabilities.

To do this, set the HttpOnly attribute in the Set-Cookie HTTP header when creating a cookie like:

“Set-Cookie: [snip]; HttpOnly

There are a few things you should know about when adopting this countermeasure.

”.

First, you need to disable the TRACE method on the web server. When the TRACE method is enabled,

if the website has cross-site scripting vulnerability, an attacker could obtain the whole HTTP request

header the browser sends using the attacking method called “Cross-Site Tracing”. An HTTP request

header contains cookie information20

Secondly, the HttpOnly attribute is not supported by all browsers, thus it is not the solution that could

benefit and protect all website visitors.

, thus the cookie will be ‘stolen’ even if the HttpOnly attribute is

set.

21

Understand that this is not the solution that would eliminate all the vulnerabilities cross-site scripting

vulnerability may pose and other threats besides cookie information leak still remain and that it may not

work depending on the web browsers the user uses. After that, decide whether it’s worth adopting to your

website.

.

By implementing these measures, security against cross-site scripting attacks is expected to improve. For

more information on cross-site scripting vulnerability, you could refer to the following documents as well.

19 W3C Recommendation HTML 4.0.1 says that the browser must follow the priority defined below when deciding which

character set to use (http://www.w3.org/TR/html401/charset.html#h-5.2.2).
1. An HTTP "charset" parameter in a "Content-Type" field
2. A META declaration with "http-equiv" set to "Content-Type" and a value set for "charset"
3. The charset attribute set on an element that designates an external resource a web application uses the POST method

and sets session ID in a hidden parameter to pass it around.
Thus, it will be recommended specifying the character code in “an HTTP charset parameter in a Content-Type field”.

20 When you use the Basic authentication scheme, the user ID and password can be stolen as well.
21 For more information on the HTTPOnly-compliant browsers, refer to the following: Browsers Supporting HTTPOnly䋺

http://www.owasp.org/index.php/HTTPOnly#Browsers_Supporting_HTTPOnly

㚧 Set the HttpOnly attribute of the cookie and disable the TRACE

method to prevent disclosure of cookie information.

5-(ix)

1.5 Cross-Site Scripting

28

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 2. 䉪䊨䉴䉰䉟䊃䊶䉴䉪䊥䊒䊁䉞䊮䉫
http://www.ipa.go.jp/security/vuln/vuln_contents/xss.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/xss_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫 䇸䉣䉮䊷䊋䉾䉪ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/601.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/602.html
(Japanese Only)

IPA䋺 ᖱႎ䉶䉨䊠䊥䊁䉞⊕ᦠ 2007 ᐕ  䇸䉁䈜䉁䈜ᄙ᭽ൻ䈜䉎䊐䉞䉾䉲䊮䉫⹊᱂䇹
http://www.ipa.go.jp/security/vuln/documents/2006/ISwhitepaper2007.pdf (Japanese Only)

1.6 CSRF

29

1.6 CSRF (Cross-Site Request Forgery)

Some websites require the users to login to offer their services. Here, if a website does not have a

mechanism to verify whether a request made by a logged-in user is indeed the request intended by the user,

the website may accept a malicious request set up by other external parties. If the website has this

vulnerability, its user could suffer from doing unintended things on the website through the trap set up by

malicious attackers. This issue is called “Cross-Site Request Forgery vulnerability” and the attacking

method exploiting this vulnerability is called “Cross-Site Request Forgery attack”.

ⅆ Possible Threats

This vulnerability could allow malicious attackers to22

- Access the services normally available only for the users who have properly

logged in

:

䊶 e.g. Transferring money, purchasing goods or canceling the membership unintended by the user

- Add and modify information normally permitted only for the users who have

properly logged in

䊶 e.g. Application settings (passwords, administrator functions etc.), writing inappropriate entries

22 Compared to the possible threats by improper session management (discussed in 1.4), one thing may differ that an attacker

may not view information available only for the users who have properly logged in. If an attacker succeeds in an attack
that could enable the further attacks, such as changing password, it could lead to information leak.

Click!

If the website is vulnerable to
CSRF, a malicious attacker
could have the users execute
unintended operations.

CSRF (Cross-Site Request Forgery)

ᾄ ώ User clicks the link,
which sends unintended
malicious requests prepared
by malicious attacker to the
web application

ᾀώUser logs
in as usual

ᾃώUser visits and
views the website
unaware of the trap

ᾂώUser remains
logged-in

ᾁώA session
ID is created

A booby-trapped
website

Web application
(for login)

WebsiteUser

Configuration
Change

CSRF-Vulnerable
Application

Forced
Message
Posting

User

Malicious Attacker

Membership
Cancellation

1.6 CSRF

30

ⅆ Websites That Need Special Attention

The websites that implement session management using the following technologies may be vulnerable to

CSRF attacks.

- Session management using cookies

- Basic Authentication

- SSL Client Authentication

If the website is applicable to the above and offers sensitive services, such as making online payment,

ramification would be huge and extreme caution is called for.

- Websites offering online payment

䊶 e.g. Online banking, online trading, online shopping, online auction

- Other websites that might offer login feature

䊶 e.g. Access to administrator functions, members-only bulletin board and blogs

ⅆ Reported Vulnerabilities

Reports related to CSRF vulnerability account only a few percents of all website-related cases but it

keeps coming up since about 2006. An example of the reported cases is a web management interface for the

embedded system, such as network hard disks, reported with this vulnerability. The following are some of

the software products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

䊶SquirrelMail Vulnerable to Cross-Site Request Forgery

http://jvndb.jvn.jp/jvndb/JVNDB-2009-002207

䊶Cross-Site Request Forgery Vulnerability in Oracle iPlanet Web Server

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000042

䊶e-Pares Vulnerable to Cross-Site Request Forgery

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000022

ⅆ Fundamental Solutions

Let’s see an example where the process transits like the following: “data input page Æ confirmation

page Æ data registration”. First, when outputting the confirmation page, set a secret in a hidden

parameter. The secret can be the session ID used for session management or you can create another ID

(the second session ID) at the time of login. Firstly, when creating a session ID, you should make sure

㚧 Access the web page, in which certain operation is to be

executed, via the POST method with a secret having the

previous web page insert it in its hidden filed, and execute the

requested operation only when the secret is correct.

6-(i)-a

1.6 CSRF

31

that predicting the session ID is difficult using a mechanism like cryptographically secure pseudo-random

number generators. Secondly, when the registration process receives a request from the confirmation

page, check the value set in the hidden parameter with the secret and proceed to registration procedure

only if they match23

Remember to implement this measure using the POST method

. In this way, an attacker cannot launch attacks unless s/he somehow obtains the

secret set in the hidden parameter.
24

. If you use the GET method, a secret

will be seeable for the external website through the Referer.

By performing password authentication, the CSRF vulnerability can be eliminated25

Compared to the solution 6-(i)-a, this measure may be easier to implement in some cases. For example,

If are using the Basic authentication without session management, a secret needs to be newly created to

implement the measure recommended in 6-(i)-a. In that case, if it is difficult to use a safe pseudo random

number generator or such, this measure can be easier to adopt.

. This measure

requires change in user interface design specification. If you cannot change the user interface design

specification and the countermeasure you can take is limited to implementation change, consider the

measure discussed in 6-(i)-a or 6-(i)-c.

By checking the Referer information, you could confirm whether the user’s browsing path (transition)

is following the steps that ought to be. If you cannot confirm, do not proceed26

Depending on the websites, however, an attacker may be able to set a tarp on the targeted website itself

and in this case, this measure may not work properly. In addition, when a user bans to send the Referer in

the browser or personal firewall settings, the user may not be able to use the website and experience

inconvenience. When adopting this measure be sure to care about these issues.

. If the Referer is absent,

stop proceeding as well since an attacker could launch CSRF attacks using a technique that can clear the

Referer.

23 See Corrective Measure #1 in 3.6
24 RFC2616, which specifies specification for HTTP/1.1, says we should use the POST method instead of the GET method

when sending confidential data (15.1.3 Encoding Sensitive Information in URI's).
RFC2616䋺Hypertext Transfer Protocol -- HTTP/1.1 http://www.ietf.org/rfc/rfc2616.txt

25 See Corrective Measure #2 in 3.6.
26 See Corrective Measure #3 in 3.6.

㚧 Check the referrer whether it is the expected URL and proceed

only when the URL is correct.

㚧 Ask for password right before executing requested operation

and proceed only when the password is correct.

6-(i)-b

6-(i)-c

1.6 CSRF

32

ⅆ Mitigation Measures

Email is sent in a post-incident manner and thus cannot prevent CSRF attacks, but it could raise a red

flag that something may be amiss when the attack actually happens. Be careful not to include sensitive

information related to privacy in the body of email.

By implementing these measures, security against CSRF attacks is expected to improve. For more

information on CSRF vulnerability, you could refer to the following documents as well.

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 3. CSRF (䉪䊨䉴䉰䉟䊃䊶䊥䉪䉣䉴䊃䊶䊐䉤䊷䉳䉢䊥)
http://www.ipa.go.jp/security/vuln/vuln_contents/csrf.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/csrf_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊥䉪䉣䉴䊃ᒝⷐ䋨CSRF䋩ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/301.html
(Japanese Only)

↥ᬺᛛⴚ✚ว⎇ⓥᚲ 㜞ᧁᶈశ䋺 䇸CSRF䇹䈫䇸Session Fixation䇹䈱⻉㗴䈮䈧䈇䈩
http://www.ipa.go.jp/security/vuln/event/documents/20060228_3.pdf (Japanese Only)

IPA䋺 ᖱႎ䉶䉨䊠䊥䊁䉞⊕ᦠ 2006 ᐕᐲ  䇸䉡䉢䊑䉰䉟䊃䉕⁓䈉 CSRF 䈱ᵹⴕ䇹
http://www.ipa.go.jp/security/vuln/documents/2005/ISwhitepaper2006.pdf (Japanese Only)

㚧 Notify to the prespecified email address automatically when

important operations have been done.

6-(ii)

1.7 HTTP Header Injection

33

1.7 HTTP Header Injection

Some web applications dynamically set the value of the HTTP response header fields based on the value

passed by the external parameters. For example, HTTP redirection is implemented by setting a redirected-to

URL specified in the parameter to the Location header field, or a web application may set the names

entered in a bulletin board to the Set-Cookie header filed. If the process of building an HTTP response

header in such web applications has vulnerabilities, an attacker could add header fields, manipulate the

response body and have the web application generate multiple responses. This issue is called “HTTP

Header Injection vulnerability” and the attack method exploiting this vulnerability is called “HTTP Header

Injection attack”. In particular, the attack that leads the web application to produce multiple responses is

called “HTTP Response Splitting attack”.

ⅆ Possible Threats

This vulnerability could allow malicious attackers to:

- Present the same threats posed by the cross-site scripting vulnerability

If an arbitrary response body is injected, the user’s browser may result in displaying the false

information or be forced to execute arbitrary scripts. Those are the same threats discussed earlier in

“1.5 Cross-Site Scripting”.

Attacker sets a trap to inject arbitrary response header fields or generate a phony response body,
and when a user visits the booby-trapped website, a phony web page could be displayed, scripts
may be executed or arbitrary cookies can be sent and stored on the user’s web browser.

HTTP Header Injection

ᾂώWeb application generates
the web page tainted with the
attacker-manipulated header
and/or response body

Malicious Attacker

User’s
web browser

A booby-trapped
web page set up

by malicious
attacker

ᾀ-aώUser visits
and views the web
page unaware of
the trap

ᾀ-bώAttacker
sends an email
with a phony link

Website

Link

Click䋣

User’s
email client

ᾁώUsers click
the link and
send malicious
requests
unknowingly

ᾃώScripts are executed on
the user’s web browser

Cookie
Disclosed

Phony Web Page
Displayed

Script
Executed

ᾄώTargeted information
(e.g. cookie) is leaked

Web application
vulnerable to
HTTP header

injection

Arbitrary
Cookie
Stored

1.7 HTTP Header Injection

34

- Create arbitrary cookies

When an HTTP Set-Cookie header is inserted, an arbitrary cookie is created and stored in the

user’s browser.

- Poison web cache

HTTP response splitting forces a web server to generate multiple HTTP responses and could

inflict cache poisoning27

, which results in web page falsification, by having a proxy server cache an

arbitrary HTTP response and replacing the original cached web page with it. The users visiting the

victimized website are to view the replaced phony web page. Compared to the cross-site scripting

attack, in which only a targeted individual would fall victim just once right after the attack, the threat

cache poisoning poses would affect a larger number of users and last long time.

ⅆ Websites That Need Special Attention

Regardless of what kind of website it is or who operates it, the websites that dynamically set the value of

the HTTP response header fields, such as the Location header field and the Set-Cookie header field, based

on the values passed by the external parameters should be cautious about this vulnerability. The websites

27 Watchfire Co. has published a paper on HTTP Response Splitting/Cache Poisoning: Watchfire: HTTP Response Splitting,

Web Cache Poisoning Attacks, and Related Topics
http://www.watchfire.com/jp/securityzone/whitepapers.asp (link broken as of January 2010)
Some of the threats discussed in the paper would stem from the vulnerabilities in proxy servers or web servers. Check for
“HTTP Request Smuggling”(*1) and “HTTP Response Smuggling”(*2)” with those products as well for they pose the
similar threats.

*1 Watchfire: “HTTP Request Smuggling” http://www.watchfire.com/jp/securityzone/whitepapers.asp (link broken)
*2 SecurityFfocus: “HTTP Response Smuggling” http://www.securityfocus.com/archive/1/425593/30/0/threaded

The Split and falsified HTTP responses are cached to a cache server, which results in users
viewing the replaced phony web page when he visits the victimized website.

HTTP Response Splitting and Cache Poisoning

ᾀώAttacker sends the attack request to
split an HTTP response and have the
server cache the phony web page B

Cache Server

ᾂώUser sends a
request for the web
page B unaware of
cache poisoning

Cache the response B
as the web page B

ᾁώAttacker’s request splits
the original HTTP response
into multiple responses
adding arbitrary one

Response A Response B

Attack Request

Web page BἬὊἊ B
Phony

Web Page B

Original web page B is replaced by the
phony web page B

Malicious
Attacker

User

User views
the phony web page

Web application
vulnerable to HTTP
header injection

Website

1.7 HTTP Header Injection

35

that use cookies for session management and that have set up a reverse proxy should take extra caution.

ⅆ Reported Vulnerabilities

Reports related to HTTP header injection vulnerability account only a few percents of all website-related

cases but it keeps coming up since we started receiving the reports. The following are some of the software

products with this issue reported to IPA. The vulnerabilities in these products are now fixed.

䊶 Active! mail 6 Vulnerable to HTTP Header Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2010-000050

䊶 Web Mailer from CGI RESCUE Vulnerable to HTTP Header Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000024

䊶 Multiple Cybozu Products Vulnerable to HTTP Header Injection

http://jvndb.jvn.jp/jvndb/JVNDB-2007-000814

ⅆ Fundamental Solutions

In some web application execution environments, a web application may directly print out an HTTP

response header specifying the fields such as Content-Type. In these cases, if the application prints out

the input value passed by the external parameter straight to the field, line feed characters may be set

along. A line feed character is used to separate the HTTP headers so that allowing line feed insertion may

become the cause of arbitrary header/body injection or response splitting. Since the header structure is

quite complex as you can see in the option of non-breaking space and difficult to take care of everything

manually, you would better use an HTTP header API offered by programming languages or execution

environments.

Note that some execution environments are reported to have vulnerabilities that their HTTP header

API does not handle line feed characters appropriately. If that is the case, apply security patches to

correct the problem, or take the measure 7-(i)-b or 7-(ii) if that is not possible.

For example, you may add a non-breaking space after unexpected line feeds, remove the string that

follows the unexpected line feeds28

28 See Corrective Measure in 3.7.

, or stop printing out a web page when detecting the unexpected line

feeds.

㚧 If HTTP header API that offers line feed neutralization is not

available for use, implement it manually.

㚧 Do not print out HTTP header directly and do it through an HTTP

header API provided by execution environment or programming

language.

7-(i)-a

7-(i)-b

1.7 HTTP Header Injection

36

ⅆ Mitigation Measures

Remove all line feed characters that appear in the input text passed by the external parameters. You

may even want to remove all control characters instead of just line feed characters. Note that if a web

application needs to accept character strings that may contain line feeds, such as input data in the

<textarea> ... </textarea> tags, systematically removing every single line feed from all input

data may hinder the web application’s proper operation and thus caution is advised.

By implementing these measures, security against HTTP header injection attacks is expected to improve.

For more information on HTTP header injection vulnerability, you could refer to the following documents

as well.

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 䇸7. HTTP 䊓䉾䉻䊶䉟䊮䉳䉢䉪䉲䊢䊮䇹
http://www.ipa.go.jp/security/vuln/vuln_contents/hhi.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/hhi_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸HTTP 䊧䉴䊘䊮䉴䈮䉋䉎䉨䊞䉾䉲䊠னㅧ᠄ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/603.html
(Japanese Only)

㚧 Remove all line feed characters that appear in the external text

input.

7-(ii)

1.8 Mail Header Injection

37

1.8 Mail Header Injection

Some web applications provide a function that sends emails to the particular email addresses about, for

example, the merchandise the users have purchased or survey replies. In general, these email addresses are

prespecified and only the web administrator can change. Depending on how it is implemented, however, an

attacker may be able to set and change them to arbitrary email addresses. This vulnerability is called “Mail

Header Injection” and the attacking method exploiting this vulnerability is called “Mail Header Injection

attack”.

ⅆ Possible Threats

This vulnerability could allow malicious attackers to:

- Third party mail relay

Used as a launching pad for spam distribution.

ⅆ Websites That Need Special Attention

The websites that have a function to send the user input data to the administrator via email should be

warned of third party mail relay. For example, a function like the “Contact” or “Survey” form could be

susceptible.

If a web application with an email-sending function has vulnerabilities, an attacker could add
arbitrary email addresses to those registered by the administrator and turn the server into a
launching pad for spam distribution.

Mail Header Injection

Web application
vulnerable to
mail header

injection

“X”

Email address “A”
specified by the
administrator

Administrator
(“A”)

Email is sent to
the email
address “X”, “Y”
and “Z” specified
by malicious
attacker

Specially-
crafted

input data

Normal Operation

Normal
input data

Attack Operation

Email addresses
unknown to the
administrator

Under normal
circumstance,
email is sent to
the email address
specified by the
administrator

User

Website

Malicious
Attacker “Y”

“Z”Spam mails
are sent

1.8 Mail Header Injection

38

ⅆ Reported Vulnerabilities

Reports related to the vulnerabilities that enable Third Party Mail Relay attacks account only a few

percents of all website-related vulnerabilities but it keep coming up intermittently since we started

receiving the reports. The following are some of the software products with this issue reported to IPA. The

vulnerabilities in these products are now fixed.

䊶 FORM2MAIL from CGI RESCUE Allows Unauthorized Email Transmission

http://jvndb.jvn.jp/jvndb/JVNDB-2009-000023

䊶 MailDwarf Vulnerability Allows Unauthorized Sending of Emails

http://jvndb.jvn.jp/jvndb/JVNDB-2007-000229

ⅆ Fundamental Solutions

In a case where the value of email header elements, such as “To”, “Cc”, “Bcc” and “Subject”, is to

be set based on external input, or the data output process to the email sending function is vulnerable, if

the external input is directly used as the output value, the line feed characters included in the external

input will be inserted as unnecessary line breaks. If this is allowed, an attacker could exploit it to insert

arbitrary email headers, alter the email body or send email to arbitrary addresses. It is recommended you

do not use external parameters to set the value of the email header elements29

.

An example of where you cannot use the fixed value for the header elements is the case that you want

to change the subject.

If you need to use the external input as the header values, it recommended to use an email-sending API

offered by the web application’s execution environment or language. However, some APIs cannot handle

the line feed character appropriately or can insert multiple headers. In those cases, apply security patch or

implement the necessary modification not to allow the line break on your own.

For example, to prevent the line break, you can insert a space or horizontal tab after the line feed

character to have the program process the lines as one continuous line, delete the characters after the line

feed character or stop generating a web page if the line break is detected.

29 See Corrective Measure #1 in 3.8.

㚧 If the fixed values cannot be used for the header, use an

email-sending API offered by the web application’s execution

environment or language.

㚧 Use the fixed values for the header elements and output all

external input to the email body.

8-(i)-a

8-(i)-b

1.8 Mail Header Injection

39

This may sound absurd but it did happen nevertheless and we feel we should warn you not to specify

the recipient email addresses directly in the hidden parameter.

Implementation like specifying recipient email addresses directly in a parameter that is to be passed to

the web application may be exploited by the third party mail relay attack by changing the parameter

value.

ⅆ Mitigation Measures

Remove all line feed characters that appear in the input text passed by the external parameters30

. You

may even want to remove all control characters instead of just line feed characters. Note that if a web

application performs the removal process on those that may contain line feeds, such as the mail contents,

systematically removing every single line feed from all input data may hinder the web application’s

proper operation and thus caution is advised.

By implementing these measures, security against Mail Header Injection is expected to improve. For

more information on Mail Header Injection, you could refer to the following documents as well.

ⅆ References

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ (䈟䈇䈛䉆䈒䈞䈇) 䇸10. 䊜䊷䊦ਇᱜਛ⛮䇹
http://www.ipa.go.jp/security/vuln/vuln_contents/mail.html (Japanese Only)
http://www.ipa.go.jp/security/vuln/vuln_contents/mail_flash.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊜䊷䊦䈱╙ਃ⠪ਛ⛮ኻ╷䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/201.html
(Japanese Only)

30 See Corrective Measure #2 in 3.8.

㚧 Remove all line feed characters that appear in the external text

input.

㚧 Do not specify the email addresses in HTML.

8-(ii)

8-(iii)

1.9 Lack of Authentication and Authorization

40

1.9 Lack of Authentication and Authorization

There are some inadequately designed websites in operation due to lack of the operator’s security

awareness. In this chapter, we will show you the vulnerabilities reported to us that stem form the lack of

important functions such as “authentication” and “authorization”.

1.9.1 Lack of Authentication

ⅆ Fundamental Solutions

Normally, when the website handles sensitive information or allows only the owner/provider of each

information to change or edit the information, it needs an authentication mechanism.

However, there was a reported case about a vulnerable website where a user could login to the website

and access the personal information by just providing his or her email address.

Email address is open information available to others and using such information to limit access to

personal information means having almost no authentication mechanism at all31

Design a web application to require something that people think it should be kept secret, such as

password.

.

1.9.2 Lack of Authorization Control

ⅆ Fundamental Solutions

When implementing authentication into the website and allowing only the owner/provider of each

information to view or change the information, if more than one user are able to login and use the

services at the same time, you may need to implement authorization with which you control who can do

what.

31 Paragraph 2 of Article 2 of the Unauthorized Computer Access Law defines “identification code” and (1) says it is “A code

the content of which the access administrator concerned is required not to make known to a third party wantonly;”.
According to this definition, an email address may not be accepted as an identification code and in turn a login mechanism
that requires only email address may not be accepted as an access control mechanism.
The Unauthorized Computer Access Law: http://www.ipa.go.jp/security/ciadr/law199908.html

㚧 Implement authorization as well as authentication to make sure

that a login user cannot pretend to be other users and access

their data.

㚧 When a web site needs access control, implement an

authentication mechanism that requires users to enter some

kind of secret information, such as password.

9-(i)

9-(ii)

1.9 Lack of Authentication and Authorization

41

A typical web application equipped with authorization mechanism issues a session ID to each user

upon successful login to implement session management, and obtains the user ID from the user’s session

ID through session variables each time access is made. A simple web application can use such user ID as

a key to allow database search or data modification. In this case, each user can access only his or her

own database entries, thus it can be said that authorization control is implemented in terms of results.

Some websites, however, store the user ID in URL or POST parameters. Such implementation, where

an externally manipulatable user ID is used as a key to allow database operations, leads to the

vulnerability where any login user can pretend to be another user and access supposedly inaccessible

data.

This problem stems from the lack of authorization control. You should implement a mechanism to

verify whether a user ID requesting database access is the same as the user ID of a login user who is

supposed to be issuing that request, or avoid getting the user ID from external parameters and obtain it

through session variables.

In other cases, when a web application uses an order number as a key for database search or data

modification, if the order number is stored in URL or POST parameters, it may lead to the vulnerability

where any login user could set other user’s order number in the URL or POST parameter and gain access

to the order information of the other users, which should be kept private.

The cause of this problem is also the absence of authorization control. Always check whether an order

number used to search the database is indeed an order number the requesting user has authorization over.

2.1 Secure Web Server

42

2. Approaches to Improve Website Security

This chapter discusses the approaches to improve website security. In the previous chapter, we have

shown the solutions and countermeasures against vulnerabilities at the stage of software design and

development. In this chapter, what we provide are solutions and countermeasures you could apply at the

operational level.

2.1 Secure Web Server

To safely operate a website, the administrator should not only secure web applications but also securely

guard the web server. Use the following chapters as reference, and see if your web server’s settings and

operation are secure.

Even though you implement an authentication mechanism to control access to the server, it can be

breached if the attackers exploit the vulnerabilities in OS or applications. Vulnerabilities have been found

on a daily basis. Check vulnerability information provided by OS and software vendors constantly and

update software or practice necessary workarounds.

It is a common practice to allow remote access to the web server for management efficiency, but if

authentication is done by just password, its security may be breached by brute force attacks. To ensure

higher security, we recommend the use of a cryptographic authentication method, such as public key

authentication.

Make a password used to access the web server sufficiently complex. Refer to the following document

for password management as well.

If the services unused in operating the website are left enabled on the web server, it is likely for the

administrators to neglect the proper maintenance over those services and keep using old versions full of

㚧 Disable unused services and delete unnecessary accounts.

㚧 When using password authentication, make sure to use a

sufficiently complex string.

㚧 Implement an authentication mechanism other than using

passwords for remote server access.

㚧 Check OS and software vulnerability information constantly and

take necessary actions accordingly.

1)

2)

3)

4)

2.2 Configure DNS Security

43

vulnerabilities. Likewise, if you allow unnecessary user accounts to be kept alive, they may not be

carefully managed and used wrongly. Make sure to disable unused services and delete unnecessary

accounts.

 .Basically, the files under the public directory on the web server are accessible from the outside world ڡ

Even if you do not offer the direct links to those files on the web pages, people can access them by

directly specifying the path. Be careful not to place the files you do not intend others to view under the

public directory on the web server.

ⅆ References

IPA IT Security Center
http://www.ipa.go.jp/security/english/index.html

JVN 䋨Japan Vulnerability Notes䋩
http://jvn.jp/en/

JVN iPedia Vulnerability Countermeasure Information Database)
http://jvndb.jvn.jp/en/

IPA䋺 䊌䉴䊪䊷䊄䈱▤ℂ䈫ᵈᗧ
http://www.ipa.go.jp/security/fy14/contents/soho/html/chap1/pass.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䈭 Web 䉰䊷䊋䈱᭴▽䈫ㆇ↪䈮㑐䈜䉎䉮䊮䊁䊮䉿
http://www.ipa.go.jp/security/awareness/administrator/secure-web/ (Japanese Only)

2.2 Configure DNS Security

If the administrators are not careful in configuring and operating the domain names or the DNS servers

they are using, malicious attackers could hijack their domain names. If domain names are hijacked, the

visitors to the website can be directed to a phony website prepared by the attacker even though the visitors

type in the correct URL. Domain name hijacking will affect not only website browsing but also emailing,

and basically all Internet services. It may be a DNS issue but should be taken seriously for it will directly

affect the website.

Check on the registration status on the domain names and DNS servers and take actions accordingly. If

you are outsourcing the DNS server operation, you should ask the outsourcee to take necessary actions.

For more information, you could refer to the following document as well.

㚧 Check on the registration status on domain names and DNS

servers and take actions accordingly.

㚧 Do not place a file you do not intend to make public under the

public directory on the web server.

5)

1)

2.3 Protect against Network Sniffing

44

ⅆ References

IPA䋺 䊄䊜䉟䊮ฬ䈱⊓㍳䈫 DNS 䉰䊷䊋䈱⸳ቯ䈮㑐䈜䉎ᵈᗧ༐
http://www.ipa.go.jp/security/vuln/20050627_dns.html (Japanese Only)

2.3 Protect against Network Sniffing

The information to be exchanged between the website and the user may be leaked through network

sniffing. If communication or data is unencrypted, captured information may be used for spoofing or other

malicious purposes.

Since network sniffing takes place on the communication channel between the website and the user, it is

difficult to prevent it solely by the website through configuration and operation. It is, however, possible to

prevent an attacker to obtain sensitive information even the sniffing itself has succeed by encrypting the

communication between the website and the visitor. Those websites which handle authentication

information or personal information should consider adopting the following countermeasures against

network sniffing.

A popular way to encrypt communication is to use HTTPS with SSL (Secure Socket Layer䋩 or TLS

䋨Transport Layer Security䋩. If the website handles information that needs to be securely protected, such

as personal information and authentication information, we recommend you encrypt the communication

channel.

If communication is unencrypted, information being transmitted over networks may be
eavesdropped and important information can be stolen.

Network Sniffing

User transmits
authentication
data in plain text

Malicious attacker
eavesdrops and steals
authentication data
User : hanako
Password : F0oB4rbA2

όόόόόόόόό

User

Malicious
Attacker

Website

Identity
Theft

Malicious attacker accesses
the website using the user’s ID
and password

㚧 If the website handles important information, encrypt

communication.

1)

2.3 Protect against Network Sniffing

45

If you have the website on a rental server, know that some rental servers do not support HTTPS. The

websites on those servers are better not to handle important information.

There are cases where the website needs to inform the users about something important, such as

personal information or password. If you are to send important information over the network, you should

encrypt either communication or information itself in order to counter sniffing. When you need to notify

information that requires encryption, use HTTPS and show it on the secure web page.

When you use email instead, you could encrypt the contents using S/MIME (Secure/Multipurpose

Internet Mail Extensions) or PGP (Pretty Good Privacy) but they require users to set up a use

environment and private key, thus may not be practical.

When a website is set to send sensitive user input, such as personal information, to the web operator

using the email sending function of a web application, encrypt the data with S/MIME or PGP. If those

technologies cannot be used, encrypt the email body with other methods.

It is possible to encrypt communication between the mail servers (SMTP oversell) or between the mail

server and the website operator (POP/IMAP over SSL), but it is unsafe because encryption may not be

done on some intermediate channels depending on network configuration.

ⅆ References

IPA䋺㔚ሶ䊜䊷䊦䈱䉶䉨䊠䊥䊁䉞 㔚ሶ䊜䊷䊦䈱ోᕈ䉕㜞䉄䉎ᛛⴚ䈱↪ᴺ
http://www.ipa.go.jp/security/fy18/reports/contents/email/email.pdf (Japanese Only)

2.4 Secure Password

Most common way of implementing user authentication is to use a user ID /password pair. If password

management and processing by the website are inappropriate, the risk of a malicious attacker stealing user

authentication information becomes higher.

㚧 Encrypt important information that a website operator receives

via email.

㚧 Do not send important information via email to notify the user

and show it on the HTTPS encrypted web page instead.

2)

3)

2.5 Mitigating Phishing Attacks

46

One way to wrongly obtain the user ID or password is guessing it. This is often tried for the websites

with a simple password scheme full of easy-to-guess passwords. How you display a web page may give out

even more hints for attackers to work on. If the website has an authentication mechanism, be careful about

the following points.

When issuing a default password, use secure random numbers to eliminate regularity and, if possible,

make it long and use alphabets, numbers and symbols. If password generation has regularity, an attacker

could register more than once and try to work out the generation mechanism. Some users may never

change their default password, thus making the default password difficult to guess is essential.

Make sure to require the user to enter the current password to change password.

When a user makes a mistake in providing authentication information, returning “Password doesn’t

match” on the error page would imply that “the user ID is correct”. This could help an attacker finds out

the user IDs and thus not recommended. Make the error message like “Invalid user ID or password” and

try not to give away clues possibly used to guess authentication information unnecessarily.

Attackers could wrongly obtain the user ID and password by guessing or peaking.

Malicious Acquisition of Authentication Information

Date of birth?
Address?
Name?

Same as user ID?
Dictionary words?Malicious

Attacker

㚧 Do not give away unnecessary hints in authentication error

message.

㚧 Require users to enter the current password to change

password.

㚧 Set hard-to-guess default passwords.

3)

1)

2)

2.5 Mitigating Phishing Attacks

47

 .(*) Mask the password entered by the user with asterisk ڡ

ⅆ References

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫 䇸䊡䊷䉱⸽ኻ╷ 䊌䉴䊪䊷䊄䊐䉞䊦䉺䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/101.html
(Japanese Only)

2.5 Mitigate Phishing Attacks

Phishing is malicious action to steal user authentication information and financial information like credit

card numbers by creating phony online banking or shopping websites and luring the Internet users into

visiting them to make the visitors disclose the information. Users need to be diligent to avoiding falling

victim to phishing scam, but some careless websites may hinder the users’ efforts and result in fostering

phishing.

To protect themselves, the users need to be able to check the website they are visiting and verify that it is

the authentic one. The website operators should think of adopting the following methods to allow their

users to confirm the authenticity of the website.

Attacker lures the users into visiting an authentic-looking phony website and disclosing
authentication information and/or personal information.

Phishing

Authentic Website

User Malicious Attacker

Phony Website Set Up by
Malicious Attacker

ᾁώAttacker obtains the
valuable information
the user has
unknowingly disclosed

ᾀώUser believes a phony website to
be an authentic website and enters
authentication information and credit
card number

㚧 Mask password being entered in the password box.

4)

2.5 Mitigating Phishing Attacks

48

A server certificate is necessary to properly implement SSL-encrypted communication but it can be

used to verify who the operator of the website is as well. The users can check the server certificate when

a web page requires them to enter their password or credit card number and confirm who the operator of

the website they are dealing with is.

Use a server certificate that is officially issued by CA. Do not use a self-issued certificate for it is

difficult to distinguish a self-issued one from a forged one and does not offer any security.

Some CA services do not support EV SSL certificates. A non-EV SSL certificate, provided it is an

official one, does enable SSL-encrypted communication, but it indicates the website operator with the

server’s hostname, thus is not capable of showing who the operator is.

If a website uses frames and sets a child frame URL based on external parameter values, it is possible

for attackers to exploit this approach for phishing. If an attacker inserts an arbitrary URL into the external

parameter, the user is redirected to a phony website set up by the attacker within the parent frame of the

authentic website. The domain name shown in the address bar will be the correct one and that makes it

difficult for the users to see that the child frame is in fact a phony web page.

When a user tries to access a web page that is accessible only after login, some websites retain the

URL of the web page in a parameter and after the user has logged in successfully, they will redirect the

user to that web page. If the website does not limit the value of the parameter that holds a redirect-to

URL, an attacker could exploit it by setting the URL of a phishing website in the parameter.

Under this phishing attack, a careful user may check if the login screen displayed is authentic, then

confirming that, the user will log in. The user may not, however, keep his or her diligence and check

whether or not the redirected web page is authentic. For example, if a redirected web page, which is a

set-up by the attacker, looks the same as the authentic login screen and says “Login Error. Please Try

Again”, the user would likely conclude that s/he may have mistyped the password and reenter the

authentication information without much suspicion.

Do not allow arbitrary URLs to be set in the redirect URL parameter and permit only the URLs that are

within your own website’s domain. In addition, make sure to implement this countermeasure into all the

web pages that use the redirect function.

㚧 When dynamically managing where to direct the user after login

using the redirect function, make sure to permit only URLs

within your own site’s domain as a redirect-to URL.

㚧 When using frames, do not generate child frame URL based on

external parameter values.

㚧 Get an Extended Validation (EV) SSL certificate and allow users

to verify who the website operator is.

1)

2)

3)

2.5 Mitigating Phishing Attacks

49

For more information on mitigating phishing attacks, you could refer to the following documents as well.

ⅆ References

IPA䋺 PKI 㑐ㅪᛛⴚ⸃⺑ 䇸⸽ዪ䈫㔚ሶ⸽ᦠ䇹
http://www.ipa.go.jp/security/pki/031.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸⌀ᱜᕈ䈱ਥᒛ䇹
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/contents/202.html
(Japanese Only)

↥ᬺᛛⴚ✚ว⎇ⓥᚲ䋺 ో䈭 Web 䉰䉟䊃↪䈱㋕ೣ
http://www.rcis.aist.go.jp/special/websafety2007/ (Japanese Only)

2.6 Protect Web Applications with WAF

50

2.6 Protect Web Applications with WAF

To secure a web application, it is important to make sure to not have vulnerabilities in the first place and

to promptly remove vulnerabilities if found any. While securing the web application itself as far as possible,

the administrator could add another layer of security to its operation using a WAF (Web Application

Firewall) to protect the web application from cyber attacks that try to exploit web application

vulnerabilities.

WAF is a security software or hardware that inspects HTTP traffic (including HTTPS32

- Protect web applications from cyber attacks that try to exploit

䋩 between

websites and users, and automatically cut off harmful traffic like cyber attacks. By using a WAF, the

following benefits are expected:

vulnerabilities.

- Detect cyber attacks that try to exploit vulnerabilities.

- Prevent multiple web applications from cyber attacks.

WAF

Depending on the developmental status and operational situation of a web application, making good use

of the WAF may be more effective than taking time and money in modifying the web application.

32 Some WAF may not monitor and check HTTPS transmission,

User

Malicious
Attacker

Website

Web Application

Web Application Firewall

(WAF)

Message

Body
Header

HTTP Request

HTTP Response

Message

Body
Header

Message

Body
Header

Message

Body
Header

Message

Body
Header

Header Header

Malicious HTTP Request

WAF Operation

Message

Body
Header

2.6 Protect Web Applications with WAF

51

ⅆ Cases where use of WAF is more effective

- where modification of application is difficult -

Web application developers should try to make an application vulnerability-free in the first place using

the chapter 1 of this guideline “Web Application Security Implementation”. However, new vulnerabilities

could be found after completing the development of the application. The new vulnerabilities must be taken

care of promptly, but any modification of the application at that stage may be infeasible. Under such

situation, WAF can be used to mitigate the effect of cyber attacks to protect the web application. For

example, WAF would be useful in the following situations.

1) When it is difficult to have the application developer modify the application

 When a vulnerability is found in an application, sometimes it may be difficult to have the application ڡ

developer directly modify the application.

When an organization decides to develop an application, it may outsource the application development

to an outside company. When a vulnerability is found in the application, there might be a case where

having the company that developed the application modify the application is difficult (i.e. the company is

no longer in the software development business).

It is possible to have some other company modify the application, but the cost could be much higher

and over budget, making the modification infeasible.

2) When a vulnerability is found in license protected software applications

 When a website is built with commercial products or open source software, it may be difficult to be ڡ

actively involved with and make sure of modification of the application.

In recent years, web applications, like wiki and blogging applications, are available both as

commercial and open source software, enabling anyone to use a web application without developing it

oneself.

When a vulnerability is found in those software, it is up to the software developers whether and when

to modify and provide an update version or security patch. If the support period for the software is

already over, it could be possible that the vulnerability is left as it is.

As for open source software, the user organization can confirm the vulnerability and modify the

software if it has the software engineers capable to do it, but not all the user organizations may have the

luxury of the in-house talent.

2.6 Protect Web Applications with WAF

52

ⅆ WAF filtering of HTTP traffic
WAF automatically scans HTTP traffic like HTTP requests and HTTP responses between websites and

users based on the WAF rules created by the website administrator. Through its scanning, a WAF checks

whether or not the traffic are “harmful” to the website and the user and filters the traffic. The WAF rules are

set to catch things like the character strings that can be used in cyber attacks to exploit web application

vulnerabilities and parameter types and values defined in the web application specifications33

When the scanned HTTP packets are deemed “rightful” (judged negative), the WAF forwards the HTTP

packets to the website or the user. On the other hand, when the HTTP packets are deemed “harmful”

(judged positive), the WAF proceeds to execute the preset actions, such as notifying the administrator and

cutting off the transmission, without forwarding the HTTP packets.

.

Because WAF does this filtering mechanically, sometimes filtering errors occur.

Positive and Negative Judgment

33 For example, say, a web application has a parameter named “id”. If the web application expects numeric numbers as the

value for “id”, then any values other than numeric numbers (e.g. a character string “example”) are illegal for the “id”
parameter. To protect this web application with a WAF, you can set a WAF rule that allows only numeric numbers as the
value for the “id” parameter.

User

Malicious
Attacker

Website

Web Application

Web Application Firewall

(WAF)

Message

Body
Header

HTTP Request

HTTP Response

Message

Body
Header

Message

Body
Header

Message

Body
Header

Message

Body
Header

Header Header

Malicious HTTP Request

Positive and Negative
Judgment

Message

Body
Header

Negative

Positive

2.6 Protect Web Applications with WAF

53

ⅆ HTTP filtering errors
Depending on the contents of HTTP packets, sometimes filtering errors occur. There are two types of

errors: false positive and false negative.

False positive is a rightful HTTP packet that gets mistakenly judged harmful. Similarly, false negative is

a harmful HTTP packet that gets mistakenly judged rightful.

When using WAF, the website administrator should take into account the possibility of filtering errors of

false positive and false negative.

False Positive and False Negative

Website

Web Application

User

Malicious
Attacker

Web Application Firewall

(WAF)

Message

Body
Header

Message

Body
Header

Header

Message

Body
Header

Message

Body
Header

Measage

Body
Header

Header

HTTP Request

Malicious HTTP Request

HTTP Response

False Positive and False Negative

Header

False Positive

False Negative

2.6 Protect Web Applications with WAF

54

ⅆ False positive and false negative in WAF

1) False Positive

䇼Causes䇽

False positive errors in a WAF occur when the WAF rules to filter the HTTP traffic between the web

application to be protected and the user are not properly defined.

䇼Impact䇽

The availability of the website is reduced due to the filtering of rightful HTTP packets.

䇼Examples䇽

 The rightful HTTP packets can be cut off by a WAF if the WAF rules are not well elaborated.

Let’s assume that a WAF rule is defined to detect HTML special characters “<” and “>” and drop

the packet if it contains them to protect the website visitors from cyber attacks that exploit cross-site

scripting vulnerability. In this case, just entering a mathematical expression including “<” and/or

(depending on the rule) “>” will make the WAF cut off the transmission.

In general, WAF rules do not include such obviously standard characters mentioned above, but false

positive is not 100 percent avoidable because of the way the WAF works.

2) False Negative

䇼Causes䇽

False negative errors in WAF occur in the following 2 situations:

a) The WAF rules are not defined appropriately to detect harmful HTTP packets.

b) The WAF rules are eased up to minimize the risk of false positive occurrence.

䇼Impact䇽

The web application cannot be properly protected from cyber attacks that try to exploit web

application vulnerabilities.

䇼Examples䇽

WAF cannot detect harmful HTTP packets because of the behavioral difference between the

WAF and the web application.

When the parameters with the same name exist in the different fields of an HTTP request, such as

a query string, message body and Cookie, how to process the parameters differs depending on the

programming language the web application is written, its middleware and how the web server is

configured. It is reported that taking advantage of this difference34

34 The attacking method that exploits the software’s behavioral difference in handling the same-named parameters is called

HTTP Parameter Pollution (HPP).

 and sending an HTTP request

where a malicious character string built to exploit the web application vulnerability is split into the

same-named multiple parameters may work to avoid the WAF detection.

2.6 Protect Web Applications with WAF

55

A reference material at the end of this guideline, “HTTP Parameter Pollution35”, shows an example of

this scenario with an open source software ModSecurity. It points out that a WAF rule “select 1, 2, 3”

cannot detect the following HTTP request as harmful36

.

When the specifications of a protocol are not clearly defined by the RFC or equivalent documents, the

developers of programming languages, middleware and web servers are left to implement those parts of

the protocol based on their own interpretation. The differences in interpretation and implementation lead

to the differences in the behavior of the software as well as the WAF. Taking advantage of those

differences, the attackers may succeed in avoiding the WAF detection of the attacks that try to exploit

web application vulnerabilities.

ⅆ To securely employ WAF

To reduce the risk of false positive and false negative occurrence, it is useful to have a test period during

which the WAF is set not to drop the positive HTTP packets that have matched the WAF rules and just

monitor HTTP traffic. The administrator should use the test period to see if the rightful HTTP traffic is not

mistakenly cut off by the WAF and the WAF rules are appropriately defined to protect the web applications.

Confirming the adequateness of the WAF operation requires good understanding of the web applications to

be protected and expertise on the HTTP and related protocols, and time to test thoroughly. Using the

outside entity capable for the task is a good option, too.

For more information on protecting web application with WAF, you could refer to the following

document as well.

ⅆ References

IPA Web Application Firewall (WAF) Guide
http://www.ipa.go.jp/security/vuln/documents/waf_en.pdf

35 Luca Carettoni, Stefano diPaola, "HTTP Parameter Pollution", OWASP AppSec Europe 2009

http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
36 The latest version of ModSecurity v2.5.10 + Core Rule Set v2.0.2, as of October 2009, supports the rules to detect HPP.

index.aspx?page=select 1&page=2,3 from table where id=1

2.7 Secure Mobile Web Sites

56

2.7 Secure Mobile Websites

Security measures addressed in this book is necessary regardless of whether the website is a PC website

or mobile website37

. However, when creating mobile websites, sometimes the mobile websites require the

different design from those for the PCs due to the restriction of the available functions. This section

discusses the problems often found with the mobile websites and things to take care of. When creating a

mobile website, take into account the issues addressed in this section and consider modifying the design of

the website if necessary.

2.7.1 Issues with Session Management

Until May 2009, the mobile browsers for all models of some mobile phone service providers (hereafter

called “carriers”) did not support the basic HTTP functions like the cookie and Referer. Hence, the mobile

websites were required to design without the use of those functions.

After May 2009, some models of those carriers began to support the cookie and Referer and some still do

not.

The models that do not support the cookie are forced to store the session ID in the URL to manage

sessions. As shown in the fundamental solution 4-(ii) in 1.4, storing a session ID as an URL parameter

generally poses a risk of session hijacking attacks since the browser sends the URL that includes a session

ID through the function that passes the Referer to the linked website. To prevent the risk, some mobile

websites avoid including external links in them or, even if included, the websites are designed to first

redirect to a web page whose URL does not include the session ID before allowing to access external

websites. However, those measures do not solve the fundamental cause and personal information leakage

incidents have kept occurring due to the case where the user publishes the URL and it is reflected by search

engines.

Implementing the workarounds like the above should be avoided as much as possible. It used to be

adequate to decide the implementation method at the carrier level and apply such workarounds only for the

carriers that did not support the cookie, and implement the same, common cookie-based session

management as that for PCs for other carriers. After May 2009, however, one carrier may offer both

cookie-supported and unsupported models, and thus the implementation method should be chosen at the

model level instead of the carrier level.

Under the current circumstance, creating a website using old know-hows that are unique to mobile

environment may endanger the safety of the website. It is necessary to revise the old know-hows.

2.7.2 Issues with Cross-Site Scripting

Mobile phones released before 2009 mostly did not support JavaScript, but after 2009, the models that

supported JavaScript, XMLHttpRequest and some other functions began to come out, getting advanced just

37 In this section, a mobile website means a web service provided by Japanese mobile carriers (e,g, i-mode and EZweb).

2.7 Secure Mobile Web Sites

57

like PCs.

In the days when mobile browsers did not support JavaScript, it was said that implementing the

countermeasures against cross-site scripting attacks was unnecessary for the mobile websites. However,

not-so-small number of mobile browsers start to support JavaScript these days and implementing the

countermeasures against cross-site scripting attacks is necessary just like for PCs.

2.7.3 Issues with Mobile ID

ⅆ What is Mobile ID?

When the users access a website using their mobile phone, sometimes an identifier allocated to the

mobile phone or mobile phone service user (hereafter called “mobile ID”) is sent to the website. The

official name for the mobile ID differs depending on the carriers. Popular examples are “i-mode ID”, ”EZ

Number”, “User ID”, “FOMA Terminal Serial Number”, “FOMA Card Serial Number” and “Terminal

Serial Number”. The mobile ID has the following characteristics.

(1) The same mobile ID is sent to all websites.

(2) It is sent to all websites regardless of whether or not they are the carrier-certified official websites.

(3) It is stored in the HTTP request header (User-Agent header or an extension header unique to each

carrier) and sent to the website.

(4) By changing the settings, the user can stop sending the mobile ID. The default setting is to send the

mobile ID.

2.7 Secure Mobile Web Sites

58

At first, some carriers set to send out the mobile ID only to their official websites. After March 2008,

however, all carriers set to send out the mobile ID to all websites. This sped up the use of the mobile ID

rapidly and the websites with mobile ID vulnerabilities have been surfaced.

ⅆ Vulnerable Authentication using Mobile ID

Some websites authenticate the users using only the mobile ID. Such authentication method is often

called “easy login”. However, since the mobile ID is sent to all websites, it is a public information.

Therefore, just checking if a user entered the correct mobile ID is not enough to authenticating the user. In

the past, there were two premises to support the validity of the authentication using the mobile ID.

(a) Access to a mobile website is made only through a mobile browser or a mobile website can

distinguish whether the access is made from a mobile browser or other medium.

(b) A user cannot modify the HTTP request header through the mobile browser.

However, these premises do not stand anymore these days.

To meet the premise (a), the websites often implement access control based on the source IP address

using the list of IP addresses provided by the carriers. However, the list is not very reliable because the

2.7 Secure Mobile Web Sites

59

carriers do not guarantee the accuracy, authenticity or recency. In addition, some carriers allow to access

the mobile websites through the PC using the same source IP addresses.

To ensure the safety of the user authentication using the mobile ID, it is necessary that the mobile ID sent

to the mobile website cannot be faked. In reality, due to the broken premise (a), it is known that some

carriers cannot prevent the mobile ID allocated to each terminal from being faked, and depending on the

implementation of the web applications, the mobile ID allocated to each mobile phone service user can be

faked as well38. For that matter, a mobile ID is easily faked with smartphones39

As described, authenticating the user using the mobile ID is not that easy. We recommend implementing

the same user authentication methods as PCs, such as using the cookie or password, or other safe methods

provided by the carriers. The carriers may give out the information about how to use the mobile ID safely

to the websites that are officially certified by the carriers (so-called “official websites”), but non-official

websites cannot obtain the information. As a result, the safety of the websites may be neglected. For more

information about authentication, see the next section, too.

.

2.7.4 Issues with Authentication Information

In this section, the issues about authentication information (the information the website uses to

authenticate the user) that are often seen in the mobile websites.

ⅆ Use Non-Secret Information as Authentication Information

Authentication information, such as password and PIN, should be secret between the user and the

website.

Some websites use a non-secret information like the date of birth as the authentication information, but

people other than the user him- or herself likely know the user’s birth date and it cannot be used as the

authentication information. The safe authentication cannot be achieved with such non-secret information40

38 Session Management Vulnerabilities in Mobile Web Application

.

http://staff.aist.go.jp/takagi.hiromitsu/paper/scis2011-IB2-2-takagi.pdf
39 In this book, smartphones means the mobile devices whose browser directly accesses the mobile services using the HTTP

protocol instead of through the carrier’s gateway.
40 The date of birth and telephone number do not meet the definition of identification code (the code that is not to be easily

shared with the third parties) defined in the Article 2 of the Unauthorized Computer Access Law. Thus, the websites solely
using such information as the authentication information may be considered that they do not offer an access control
protection.

http://staff.aist.go.jp/takagi.hiromitsu/paper/scis2011-IB2-2-takagi.pdf

2.7 Secure Mobile Web Sites

60

ⅆ Issues of Authentication Strength

To prevent the third parties from guessing or finding the authentication information by trial and error, the

websites need to provide the environment where the users could set up and use a sufficiently sophisticated

authentication information.

The mobile phone’s user interface is different from PC and unsuitable for entering a long character string.

For that reason, the mobile websites often end up accepting only the numbers as the authentication

information. However, such authentication can be easily broken.

For example, in the case of using a 4-digit number as the authentication information, there are only

10,000 combinations and the correct combination is very likely obtained by trial and error.

The 4-digit authentication may seem safe since it is widely adopted as a form of identification by the

banks for the ATM transactions or the access to the call centers, but it is valid because the number of times

a user can authenticate him- or herself by try and error is restricted. If it is not restricted, the safety of this

method is lost.

For the websites, restricting the number of times one can try to authenticate by trial and error is quite

difficult in most cases. For example, it can be implemented by locking up the user account after the

authentication attempt is continuously failed for the certain number of times, but such a simple measure

cannot prevent the reverse brute force attack where a third party tries to break the authentication by trial

and error changing the user IDs instead of passwords.

The authentication information is the one and only factor the web service can use and rely on. Do not

limit the authentication information to the numbers and allow the users to use a sophisticated, long

password that consists of alphabets, numbers and symbols.

http://䂾䂾/login

Login

Email

Login

PIN
ipa@exam...
2648

2.7 Secure Mobile Web Sites

61

ⅆ Security and Convenience

A strong password that has a higher password pattern takes time to enter and is burdensome for the users.

For that, when designing a website, the developer may be tempted to design one with a lower password

pattern for convenience instead of security. However, considering the safety of the users, keep the strength

of the password with a higher password pattern and reduce the frequency of entering the password.

There are some ways to reduce the frequency to enter the password. A popular example measure is to use

the cookie to issue a session ID effective for the certain period of time41

The longer the validity period of the session ID is, the lesser the entry of the password. Consider an

adequate time of period depending on the services provided by the websites.

 and consider that the user has

successfully logged-in while the session ID is valid. PC websites often offer the choices to the users

whether or not to use this function with the explanation such as “next time you do not have to log in “ or “it

will keep the logged-in status”

ⅆ Types of Characters Used for Password and Password Pattern

For the PC websites, the users are often recommended to use a password that consists of alphabets,

numbers and symbols in combination. Such password is strong but can be unpractical to be used for the

mobile phone. For the mobile phone, a number-only password is feasible but in that case, we recommend

you increase the number of digits and make sure that the password has a sufficient password patterns. The

figure next page shows that the number of password patterns per popular character combinations for the

password. Use the graph to keep the adequate level of password patterns.

41 The session ID use here cannot be guessed by the third party. For more information, see Fundamental Solution 4-(i) on

page 18.

2.7 Secure Mobile Web Sites

62

For example, to achieve the same level of the password pattern as an 8-character password that consists

of alphabets (do not discriminate the upper/lower case letters), numbers and symbols, 16 digits are

required. Also, you can see that a 4-digit password has only the same level of the password pattern as a

2-character password that consists of alphabets (do not discriminate the upper/lower case letters), numbers

and symbols.

2 Chars
2 Chars 2 Chars

2 Chars

3 Chars

3 Chars

3 Chars 3 Chars
3 Chars

4 Chars

4 Chars

4 Chars 4 Chars
4 Chars

5 Chars

5 Chars

5 Chars
5 Chars

5 Chars

6 Chars

6 Chars

6 Chars
6 Chars

6 Chars

7 Chars

7 Chars

7 Chars
7 Chars

7 Chars

8 Chars

8 Chars

8 Chars
8 Chars

8 Chars

9 Chars

9 Chars

9 Chars
9 Chars

9 Chars

10 Chars

10ሼ

10ሼ

11 Chars

11 Chars

12 Chars

12 Chars

13 Chars

14 Chars

15 Chars

16 Chars

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Number Alphabet
㧔Lower Case

Only)

Alphabet
㧔Upper/Lower)

Alphabet
㧔Upper/Lower)

+Number

Alphabet
㧔Upper/Lower)

+Number
+Symbol

Pattern

䋨10n䋩

Type of Characters

3.1 Case Studies (SQL Injection)

63

3. Case Studies

Up to this chapter, we have shown the vulnerability measures for the web application and the approaches

to improve the website security. In this chapter, we will present two cases of failure where vulnerabilities

were not properly taken care of and show some examples of how to fix them.

3.1 SQL Injection

In this section, we will show sample user authentication programs, which fail to properly counter the

SQL Injection vulnerability.

Ṳ PHP and PostgreSQL

䇼Vulnerable Implementation䇽

The above is part of source code implementing user authentication.

$uid in the first line is the user ID to be provided by the user. $passh is a hash value the web

application calculates based on the password the user enters. In the first line, the web application uses

these variables to compose an SQL statement and assigns them to $query. The pg_query() function42

䇼What’s Wrong?䇽

in the second line is a PostgreSQL function provided by PHP and executes $query, which is the SQL

statement set in the first line. This sample program, however, lacks escaping process for the $uid value,

which allows an attacker to launch SQL injection attacks by inserting a specially-crafted value that would

turn into a malicious SQL statement.

Like in this case, if a web application does not perform escaping for the values passed by the external

parameters, it may cause execution of unexpected SQL statements.

For example, suppose a user enters “taro'--” as user ID, the SQL statement to be sent to the

database will be the following:

The single quote (‘) used in the SQL statement above is a special character, which defines a string

literal by enclosing a data string within a pair of single quotes. Likewise, two consecutive hyphens (--)

are a special character which tells the database to ignore everything that comes after it as comments.

Which means the database will ignore [’ AND pass = eefd5bc2..] when the value [taro’ --] is set in $uid.

As a result, the SQL statement to be sent to and executed by the database would become like this.

42 pg_query: http://jp.php.net/manual/en/function.pg-query.php

SELECT * FROM usr WHERE uid = 'taro'--' AND pass ='eefd5bc2...'

$query = "SELECT * FROM usr WHERE uid = '$uid' AND pass = '$passh';
$result = pg_query($conn, $query);

SQL

PHP

3.1 Case Studies (SQL Injection)

64

What it means is that if a user account ”taro” does exist in the database, the attacker could log in

without knowing taro’s corresponding password. What’s more, not only bypassing user authentication but

also arbitrary database manipulation becomes possible by just changing a string to feed into $uid. This

problem is caused by the fact that the web application does not perform escaping for the value of the

elements that compose an SQL statement.

The pg_query() function is capable of executing multiple SQL queries. If this function is vulnerable

to SQL injection, an attacker could insert more queries in addition to the original one, which will

heighten the threats. The below is an example illustrating this issue.

䇼Corrective Measure #1䇽

 Use the prepared statements

Use the pg_prepare() function43 or the pg_execute() function44

 instead of the pg_query()

function.

The pg_prepare() function and the pg_execute() function are PostgreSQL functions provided in

PHP 5.1.0 and later and supported only by PostgreSQL 7.4 and later.

The pg_prepare() function generates a prepared statement. Its third argument is an SQL statement

where the variables are referred to using the placeholders (bind variables) $1, $2... without actual value.

The pg_execute() function executes the prepared statement the pg_prepare() function has

created. When the placeholders are used in a prepared statement, the pg_execute() function converts

each element of the third argument ($uid and $passh in this case) into a string and set them in the

corresponding placeholders (called “binding”) and executes the completed SQL statement. The use of

placeholders saves you from explicitly performing escaping.

43 pg_prepare: http://jp.php.net/manual/en/function.pg-prepare.php
44 pg_execute: http://jp.php.net/manual/en/function.pg-execute.php

$result = pg_prepare($conn, "query", 'SELECT * FROM usr WHERE uid= $1 AND pass=$2);
$result = pg_execute($conn, "query", array($uid, $passh));

// Set two SQL queries in $query
$query = "SELECT item FROM shop WHERE id = 1;
 SELECT item FROM shop WHERE id = 2;"
$result = pg_query($conn, $query);

SELECT * FROM usr WHERE uid = 'taro'--

SQL

PHP

PHP

http://jp.php.net/manual/ja/function.pg-prepare.php
http://jp.php.net/manual/ja/function.pg-execute.php

3.1 Case Studies (SQL Injection)

65

䇼Corrective Measure #2䇽

 Use the function equipped with a placeholder capability

Use the pg_query_params() function45

 instead of the pg_query() function.

The pg_query_params() function is a PostgreSQL function provided in PHP 5.1.0 and later46

The pg_query_params() function does not create a prepared statement but is equipped with a

placeholder capability. It takes an SQL statement in which placeholders ($1, $2, ...) are used as the

second argument and the actual values for the placeholders as the third argument. The use of placeholders

saves you from explicitly perform escaping.

 and

supported only by PostgreSQL 7.4 and later.

䇼Corrective Measure #3䇽

 Use an escape function

Use the pg_escape_string() function47

 and perform escaping for all elements in an SQL statement

to be executed by the pg_query() function.

The pg_escape_string() function is a PostgreSQL function provided in PHP 4.2.0 and later and

supported only by PostgreSQL 7.2 and later. It will escape the special characters designated in

PostgreSQL.

You can write an escape function yourself but it will be difficult to cover all the special characters that

have a unique meaning in PostgreSQL, thus not recommended. Use pg_escape_string() and it will

perform necessary escaping automatically.

In the code above, $passh goes through escaping process as well. $passh is a hash value calculated

from the password and unlikely to be exploited in SQL injection attempts. Nevertheless, we recommend

performing escaping for these internally processed elements like $passh as well. This will save you

from checking all elements whether or not you should perform escaping for them. With a complex

program, doing that may be impractical and even create a cause of vulnerability by missing what you

should have performed escaping for. We recommend that you uniformly perform escaping for all the

elements that make up an SQL statement.

45 pg_query_params: http://jp.php.net/manual/en/function.pg-query-params.php
46 Support for PHP4 has been discontinued since December 31, 2007. All PHP4 users are encouraged to upgrade to PHP5.

PHP4 end of life announcement䋺 http://www.php.net/index.php#2007-07-13-1
47 pg_escape_string: http://jp.php.net/manual/en/function.pg-escape-string.php

$query = "SELECT * FROM usr WHERE uid = '".pg_escape_string($uid)."'
 AND pass = '".pg_escape_string($passh)."'";
$result = pg_query($conn, $query);

$result = pg_query_params($conn, 'SELECT * FROM usr WHERE uid = $1
 AND pass = $2', array($uid, $passh));

PHP

PHP

http://jp.php.net/manual/ja/function.pg-query-params.php
http://www.php.net/index.php#2007-07-13-1
http://jp.php.net/manual/ja/function.pg-escape-string.php

3.1 Case Studies (SQL Injection)

66

Ṳ PHP and MySQL

䇼Vulnerable Implementation䇽

This is part of source code implementing user authentication.

Same as the problematic implementation shown above in 1-1) PHP and PostgreSQL, this sample

program also lacks escaping process for the input value for $uid, which allows an attacker to launch

SQL injection attacks by inserting a specially-crafted value that would turn into a malicious SQL

statement.

䇼Corrective Measure #1䇽

 Use the prepared statements

Instead of the mysql_query() function, use the mysqli extension48, such as mysqli_prepare()49,

mysqli_stmt_bind_param()50 and mysqli_stmt_execute()51

.

The mysqli_prepare(), mysqli_stmt_bind_param() and mysqli_stmt_execute()

function are MySQL functions provided in PHP mysqli extension and supported only by MySQL 4.1.3

and later.

The mysqli_prepare() function generates a prepared statement. The second argument is the

prepared statement where an SQL statement is expressed using the placeholder “?” without actual value.

The mysqli_stmt_bind_param() function binds the actual data value (bind value) to the

placeholders within the prepared statement created by the mysqli_prepare() function. The third and

later arguments ($uid and $passh in this case) are the bind values. The second argument “ss” indicates

the type of the bind values (s for string). Since both elements, $uid and $passh, are the “string” type,

two ss are set.

The mysqli_stmt_execute() function executes the completed prepared statement. The use of

these functions saves you from explicitly performing escaping.

48 Mysqli extension䋺 http://jp2.php.net/manual/en/ref.mysqli.php
49 mysqli_prepare: http://jp.php.net/manual/en/function.mysqli-prepare.php
50 mysqli_stmt_bind_param: http://jp.php.net/manual/en/mysqli-stmt.bind-param.php
51 mysqli_stmt_execute: http://jp.php.net/manual/en/function.mysqli-stmt-execute.php

// Create a prepared statement
$stmt = mysqli_prepare($conn, "SELECT * FROM usr WHERE uid= ? AND pass = ?");
// Bind $uid and $passh to the SQL statement (corresponding placeholders)
mysqli_stmt_bind_param($stmt, "ss", $uid, $passh);
// Execute the SQL statement
mysqli_stmt_execute($stmt);

$query = "SELECT * FROM usr WHERE uid = '$uid' AND pass = '$passh'";
$result = mysql_query($query);

PHP

PHP

http://jp.php.net/manual/ja/function.mysqli-prepare.php
http://jp.php.net/manual/en/mysqli-stmt.bind-param.php
http://jp.php.net/manual/ja/function.mysqli-stmt-execute.php

3.1 Case Studies (SQL Injection)

67

䇼Corrective Measure #2䇽

 Use an escape function

Use the mysql_real_escape_string() function52

 to perform escaping for all elements that make up

an SQL statement to be executed by the mysql_query() function.

The mysql_real_escape_string() function is a MySQL function provided in PHP 4.3.0 and

later. It will escape the MySQL special characters.

You can write an escape function yourself but it will be difficult to make sure to cover everything and

thus not recommenced.

Likewise, to make sure you escape everything you need to, we recommend that you uniformly perform

escaping for all the elements that make up an SQL statement including internally processed ones, such as

$passh.

Ṳ Perl (with DBI)

䇼Vulnerable Implementation䇽

This is part of source code implementing user authentication. This example uses a standard database

interface module called DBI53

To access the database, it uses database handles (e.g. the prepare method) or statement handles (e.g. the

execute method). This sample program, however, lacks escaping process for the input value for $uid and

allows an attacker to launch SQL injection attacks by inserting a specially-crafted value that turns into a

malicious SQL statement.

 commonly used with Perl.

䇼What’s Wrong?䇽

This sample demonstrates a common but dangerous coding error when using Perl DBI.

The prepare() method in the DBI module generates a prepared statement and does support

placeholders. Likewise, the execute() method executes the prepared statement created by the

prepare() method and it is also capable of binding if the prepared statement contains the placeholders.

What’s wrong in this sample program is that it does not use the placeholders nor perform escaping

even though a composed SQL statement contains exploitable variables, which makes this application

vulnerable to SQL injection attacks.

52 mysql_real_escape_string: http://jp.php.net/mysql_real_escape_string
53 DBI: http://dbi.perl.org/about/

$query = "SELECT * FROM usr WHERE uid = '$uid' AND pass = '$passh'";
$sth =$dbh->prepare($query);
$sth->execute();

$query = "SELECT * FROM usr WHERE uid = '".
 mysql_real_escape_string($uid)."' AND pass = '".
 mysql_real_escape_string($passh)."'";
$result = mysql_query($query);

PHP

Perl

http://jp.php.net/mysql_real_escape_string
http://dbi.perl.org/about/

3.1 Case Studies (SQL Injection)

68

䇼Corrective Measure #1䇽

 Use prepared statements with placeholders

When composing an SQL statement in the prepare() method of the DBI module, use the

placeholder “?” in the place of variables. Then, specify the bind values to be set to the placeholders in the

execute() method.

䇼Corrective Measure #2䇽

 Use an escape function

Use the quote() method in the DBI module and perform escaping for the variables.

The quote() method will take in a string specified in its argument, escape the special characters in

the string and return the output after enclosing it with double quotes.

What it recognizes as the special characters differs from database engine to database engine and it is an

issue that must be dealt with when performing escaping. DBI provides a set of drivers, called DBD

(DataBase Drivers) to adapt to various database engines. The quote() method in DBI lets DBD handle

the database engine differences and offers the user transparency to this issue.

$sth = $dbh->prepare("SELECT * FROM usr
 WHERE uid =".$dbh->quote($uid)." AND
 pass =".$dbh->quote($passh));
$sth->execute();

$sth =$dbh->prepare("SELECT * FROM usr WHERE uid = ? AND pass = ?");
$sth->execute($uid, $passh);

Perl

Perl

3.2 Case Studies 䋨OS Command Injection䋩

69

3.2 OS Command Injection

In this section, we will present a sample mail sending program that is vulnerable to OS command

injection.

Ṳ A Perl program that invokes the sendmail command

䇼Vulnerable Implementation䇽

The above is part of a program that sends an email with the email address that the user has input in the

web form as the sender.

The input email address is stored in the variable $from. The first line removes the special shell

characters ", ;, ', <, >, | and space from the content of $from. The second line invokes the OS’s

sendmail command to start a mail sending process and passes the content of $from to a command line

option.

Despite the sanitization in the first line, this implementation is still vulnerable to OS command

injection.

䇼What’s Wrong?䇽

In this implementation, if the value of $from is someone@example.jp, the following command is

executed as it is meant to be.

However, if the value of $from is maliciously crafted and `touch[0x09]/tmp/foo` (where

[0x09] means horizontal tabulation) is entered, the following command will be executed and an OS

command injection attack could be successfully done.

The back quote (`) is a shell meta-character that executes any sell command put between the back

quotes and returns the command output to the command line. In the sample program, the double quote

and single quote are sanitized but the back quote is left untouched. This neglect resulted in allowing an

attacker to execute arbitrary command.

In addition, removing the space in the first line of the sample program may give a false sense of

assurance that an attacker cannot freely specify command line options even if s/he could execute

arbitrary command. However, using the horizontal tabulation [0x09] like the above enables the attacker

to specify arbitrary command line options as well. Here, the horizontal tabulation works as a separating

character just like the space.

/usr/sbin/sendmail -t -i -f `touch[0x09]/tmp/foo`

/usr/sbin/sendmail -t -i -f someone@example.jp

$from =~ s/"|;|'|<|>|\|| //ig;
open(MAIL, "|/usr/sbin/sendmail -t -i -f $from");

Perl

sh

sh

3.2 Case Studies 䋨OS Command Injection䋩

70

What character has what sell functionality differs depending on the kind of shells. Do not sanitize the

characters with wild guess or the sanitization will likely end up incomplete.

䇼Corrective Measure #1䇽

 Use libraries

By stopping invoking OS commands, the underlying cause of the OS command injection vulnerability

will be removed. See if the functionality presently enabled by invoking OS commands can be done using

the existing libraries.

The task of the sample program is to send an email. With a mail sending library MAIL䋺䋺Sendmail,

you can still execute the task while fundamentally removing OS command injection vulnerability.

䇼Corrective Measure #2䇽

 Not to put the parameter value in the command line

If substitutable libraries are unavailable and you cannot stop using the commands, there is still a

chance you can remove the OS command injection vulnerability by changing the way to invoke the

command.

In the sample program, specifying the sender’s email address using the command line option was what

it led to the vulnerability. However, it is not mandatory to specify the sender’s email address through the

command line option and it could be specified in the email header through the command’s standard input.

This way, the value of $from is not used in the command line and therefore remove the OS command

injection vulnerability.

Note that if you modify the program like the above, you may make the program vulnerable to email

header injection now. Make sure that the value of $from does not contain the link break characters. See

the corrective measure #2 in 3.8 as well.

䇼Corrective Measure #3䇽

 Invoke the commands without shell access

If substitutable libraries are unavailable and you cannot stop using the commands, there is still a

chance you can remove the OS command injection vulnerability by invoking the command without shell

access.

open(MAIL, '|-') || exec '/usr/sbin/sendmail', '-t', '-i', '-f', '$from';

$from =~ s/\r|\n//ig;
open(MAIL, '|/usr/sbin/sendmail -t -i');
…
print MAIL "From: $from\n";

use Mail::Sendmail;
%mail = (From => $from, …);
sendmail(%mail);

Perl

Perl

Perl

3.2 Case Studies 䋨OS Command Injection䋩

71

In Perl, you can invoke the command directly without shell access. The code above executes the same

functionality as the second line of the sample program. Even if the value of $from contains the special

shell characters, the OS command injection vulnerability is harmless because the shell commands are not

to be executed.

3.3 Case Studies (Unchecked Path Parameters)

72

3.3 Unchecked Path Parameters

In this section, we present a sample file display program with unchecked path parameter vulnerability.

Ṳ A PHP program that opens and displays the file content to the screen

䇼Vulnerable Implementation䇽

The above is part of a program that opens and displays the contents of the specified file to the screen.

The $file_name variable in the first line is replaced by the name of a file specified in the file_name

parameter in a URL. If the file indeed exists, the fopen() function in the fifth line opens it and the

fpassthru() function in the sixth line outputs its contents to the screen. If the file does not exist, the

contents of the nofile.png file is outputted. The fundamental premise here is that only the files stored

in the server’s public directory are to be specified in a URL.

This implementation simply ignores the possibility where a file name set in a URL may be an absolute

path or contain ../, which makes the program vulnerable to directory traversal.

䇼What’s Wrong?䇽

In this implementation, if the file_name parameter in a URL is set with /etc/passwd, the contents

of /etc/passwd will be outputted to the screen.

By predefining an accessible directory like the following, you could prevent an absolute path from

being set for a file path parameter. However, setting a relative path that refers to the upper directories in a

URL, like ../../../etc/passwd, still allows the contents of /etc/passwd to be disclosed on the

screen.

䇼Corrective Measure䇽

 Extract only the file name from the path parameter

By extracting just the file name from the path parameter using the functionalities that come with OS or

programming languages, the underlying cause of the path parameter directory traversal vulnerability will

$file_name = $_GET['file_name'];
$dir = '/home/www/image/'; //predefine the directory
$file_path = $dir . $file_name;
if(!file_exists($file_path)) {
 $file_path = $dir . 'nofile.png';
}
$fp = fopen($file_path,'rb');
fpassthru($fp);

$file_name = $_GET['file_name'];
if(!file_exists($file_name)) {
 $file_name = 'nofile.png';
}
$fp = fopen($file_name,'rb');
fpassthru($fp);

PHP

PHP

3.3 Case Studies (Unchecked Path Parameters)

73

be removed.

basename() is a function that extracts only a file name (excl. directories) from the path parameter

value. By using the basename() function, only the file name is extracted for use even if an absolute path

or relative path using ../ is specified, and the path parameter directory traversal vulnerability will be

removed.

$dir = '/home/www/image/';
…
$file_name = $_GET['file_name'];
…
if(!file_exists($dir . basename($file_name))) {
 $file_name = 'nofile.png';
}
$fp = fopen($dir . basename($file_name),'rb');
fpassthru($fp);

PHP

3.4 Case Studies (Improper Session Management)

74

3.4 Improper Session Management

In this section, we present a sample session ID generation program with session management

vulnerability.

Ṳ Session ID Generation with Perl

䇼Vulnerable Implementation䇽

The above is part of a program that generates a session ID. This program calls the

getNewSessionId() function and generates a session ID. The getNewSessionId() function returns

a session ID as incrementing the number stored in the /tmp/.sessionid file.

With this implementation, the session ID can be easily guessed, making it vulnerable to session

hijacking.

䇼What’s Wrong?䇽

In this implementation, the session ID is a number and issued in sequence from 1, and then 2, 3, 4, and

so on. The program stores the latest session ID in the /tmp/.sessionid file. When an attacker

accesses the website, a new session ID is issued to the attacker as well. For example, if the session ID

issued for the attacker is “3022”, it is quite likely that the session ID “3021” is also valid at that time. By

accessing the website using the session ID “3021”, the attacker could hijack the other user’s session that

are allocated with the session ID “3021”.

To prevent such session hijacking attacks, the session ID should be generated using a pseudo random

number generators.

䇼Common Mistake #1䇽

 Generate a session ID based on the information easily guessable by the third party

This program uses a value that is made up by combining the UNIX timestamp54

54 The number of seconds since midnight, January 1, 1970. Also called “the Epoch”.

 and the process ID as

the session ID. Here, a new process is created upon access to the website through CGI.

sub getNewSessionId {
 my $sessid = time() . '_' . $$;
 ...
 return $sessid;
}

sub getNewSessionId {
 my $sessid = getLastSessionId ('/tmp/.sessionid');
 $sessid++;
 updateLastSessionId ('/tmp/.sessionid', $sessid);
 return $sessid;
}

Perl

Perl

3.4 Case Studies (Improper Session Management)

75

When the getNewSessionId() function is called, the program concatenates the UNIX timestamp

(the time() function), an underscore (_), and the process ID (the variable “$$”), and returns the

resulting string as a session ID. For example, a session ID of “1295247752_27554” will be returned.

This program is vulnerable to session hijacking attacks that exploit the easiness of guessing the session

IDs.

Let’s suppose that 10 sessions were created in one minute after the time the attacker established his or

her session. The attacker can figure out the process ID used in his or her session to connect the web

application from the session ID issued for the attacker. In general, a process ID is issued in sequence for

new processes. If the process ID issued for the attacker’s session was “27554”, the attacker can guess

that the process ID for other users’ session would be “27555”, “27556” … “27564”. Next, if the

attacker’s UNIX timestamp was “1295247752”, the UNIX timestamp for the next one minute after the

attacker’s session establishment had to be a value between “1295247753” and “1295247812”. The

number of possible session ID combinations based on the guess of the process ID and the UNIX

timestamp is 600. By going through these 600 possible session IDs, it is possible that the attacker

succeeds in the session hijacking attack.

䇼Common Mistake #2䇽

 Generate a session ID based on the information easily obtainable by the third party

This program calculates a hash of the value that is made up by combining the user’s source IP address,

the source port number and the UNIX timestamp, and uses it as a session ID.

When the getNewSessionId() function is called, the getNewSessionId() function concatenates

the user’s source IP address ($ENV{'REMOTE_ADDR'}), the source port number

($ENV{'REMOTE_PORT'}) and the UNIX timestamp (the time() function), and generates a string.

Then, the getNewSessionId() function calculates a SHA-256 hash of the resulting string and returns

the hash as a session ID. For example, a session ID

of ”093a2031a79cb4904b1466ee7ad5faaa3afe7b787db66712f407326b213cc2a4” will be returned.

The use of a hash may give an impression that it is a safe method. But if the mechanism to generate a

session ID is disclosed to the third party55

By luring the user to a malicious website, the attacker can obtain the user’s source IP address

, the third party may manage to guess the session IDs.
56

55 For example, this program is an open-source software or the source code is leaked to the public.

. On the

other hand, the source port number will be unobtainable information for the attacker. Yet, the scope of the

56 Depending on the network path to access the website, an IP address may not be specified.

use Digest::SHA qw(sha256_hex);
...
sub getNewSessionId {
 my $sessid = '';
 $sessid = $sessid . $ENV{'REMOTE_ADDR'};
 $sessid = $sessid . $ENV{'REMOTE_PORT'};
 $sessid = $sessid . time();
 $sessid = Digest::SHA::sha256_hex($sessid);
 ...
 return $sessid;
}

Perl

3.4 Case Studies (Improper Session Management)

76

possible source port number is between 1024 to 65535, and depending on the user’s network

environment, the scope can be narrowed down to around 20,000.

For the network environment where the number of the possible source port number is limited to 20,000,

suppose that an user establishes a session with this web application and the attacker obtains the user’s

source IP address within 10 seconds before and after the user’s session establishment, the number of the

possible session ID combination is 200,000 (20,000 possible source port numbers times 10 possible

UNIX timestamps). By going through these 200,000 possible session IDs, it is possible that the attacker

succeeds in the session hijacking attack.

3.5 Case Studies (Cross-Site Scripting)

77

3.5 Cross-Site Scripting

In this chapter, we show sample programs in which the cross-site scripting vulnerability is not properly

taken care of.

The cross-site scripting vulnerability is difficult to eradicate because of its nature. In many cases,

however, the problem stems from the fact such that the developers did not implement basic

countermeasures to begin with nor did so in a mistaken way. We will divide the sample cases into three

categories and explain each one.

1䋮 Countermeasures unimplemented

2䋮 Insufficient countermeasures

3䋮 Misguided countermeasures

3.5.1 Countermeasures Unimplemented

Ṳ No escaping is done

䇼Vulnerable Implementation䇽

By extracting just the file name from the path parameter using the functionalities that come with OS or

programming languages, the underlying cause of the path parameter vulnerability will be removed.

This is part of source code implementing outputting of the search results.

A string entered into the search form, “IPA” is sent to the web application and set to $keyword. This

web application embeds the $keyword value in multiple places, such as in the form or title when it

outputs a search result page. However, it does not perform escaping for the $keyword value before

outputting it. This will be a cause that allows an attacker to insert arbitrary scripts.

Search

Search results for “IPA”

1. Information Promo

Search

Search results for “IPA”

1. Information Promo

use CGI qw/:standard/;
$keyword = param('keyword');
...
print ... <input name="keyword" type="text" value="$keyword">
 ... The search results for ”$keyword”

Perl

3.5 Case Studies (Cross-Site Scripting)

78

䇼What’s Wrong?䇽

How a web application should output strings differs depending on whether it outputs a string as text or

HTML tags. In this sample case, $keyword is a search keyword and supposed to be outputted as text.

Therefore, the special characters, such as &, <, >, " and '57

Neglecting this process results in a defect of incorrect page display due to the control characters

included in $keyword. The cross-site scripting attack exploits this defect.

, that may be included in $keyword need to

be escaped.

䇼Corrective Measure #1䇽

 Use an escape function

Use the escapeHTML() function in the CGI module.

The escapeHTML() function is a Perl function provided in a Perl module CGI. The CGI module is

part of the standard Perl 5 distribution.

The escapeHTML() function takes in a string specified in its argument, escapes all HTML special

characters in the string and returns the result. The table below shows the special characters the

escapeHTML() function escapes and their corresponding escape sequence58

.

Special Character Escape Sequence
& &
< <
> >
" "
' '

57 The commonly used quotation mark in the tags is “ (double quote) but ‘ (single quote) is widely used as well , thus we

address both of them here.
58 CGI.pm finely defines what characters are to be escaped depending on character codes. For example, with ISO-8859-1 and

WINDOWS-1252, 0x8B (Single Left-Pointing Angle Quotation Mark) and 0x9b (Single Right-Pointing Angle Quotation
Mark) will be escaped, too.

use CGI qw/:standard/;
$keyword = param('keyword');
...
print "<input ... value=\"".escapeHTML($keyword)."\"...";
print "The Search results for ".escapeHTML($keyword)."...";

Perl

3.5 Case Studies (Cross-Site Scripting)

79

䇼Corrective Measure #2䇽

 Use a self-made escape function

Ṳ No character code is set

䇼Vulnerable Implementation䇽

Response from web application

This is part of the HTTP response from a web application.

The value of “Content-Type” field is used to tell the browser the media type of the entity-body sent

to it. The response shown above, however, does not provide that information. In such a case, the browser

decides what character code to use on its own based on its preimplemented rule. For example, the

browser will guess what to use from the entity-body, and this behavior could be exploited by attackers in

cross-site scripting attacks.

䇼What’s Wrong?䇽

This sample program has no defense against the cross-site scripting attacks that exploit the browser’s

character-code handling behavior. To solve this problem, you need to make sure to set a character code in

the “Content-Type” field of HTTP response header.

For more information, see 5-(viii) in 1.5.3 “Measures common to all web applications”.

HTTP/1.1 200 OK
...
Content-Type: text/html

<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html">

print "<input ... value=\"".&myEscapeHTML($keyword)."\"...";
print "The search results for ".&myEscapeHTML($keyword)."...";
...
Self-made escape function: myEscapeHTML
sub myEscapeHTML($){
 my $str = $_[0];
 $str =~ s/&/&/g;
 $str =~ s/</</g;
 $str =~ s/>/>/g;
 $str =~ s/"/"/g;
 $str =~ s/'/'/g;
}

(1) No character code is set in HTTP response header

(2) No character code is set in HTML META declaration

Perl

HTTP Response

3.5 Case Studies (Cross-Site Scripting)

80

䇼Corrective Measure䇽

 Set a character code in the “Content-Type” field of HTTP response header

3.5.2 Insufficient Countermeasures

Ṳ Perform escaping for the text input at the timing of data entry

䇼Vulnerable Implementation䇽

This sample program has no defense against the cross-site scripting attacks that exploit the browser’s

character-code handling behavior. To solve this problem, you need to make sure to set a character code in

the “Content-Type” field of HTTP response header.

Message Posting Form

Confirmation Screen

This is part of source code outputting a confirmation page using the HTML source code of a message

posting form and the data entered in the form.

The message posting form has three elements: a comment field in which a user can enter comments, a

check box and the user ID which is not to be displayed on the web page.

These three values entered in the message posting form are passed to the web application and only two

Comment

Hello!

Confirm POST

The message below
will be posted:

Hello!

POST

$comment = escapeHTML(param('comment'));
$agree = param('agree');
$uid = param('uid');
...
print "The message below will be posted:
".$comment."...
print "<input ... hidden ... =\"".$uid ...

<textarea name="comment" ...
<input name="agree" type="checkbox" value="yes">...
<input name="uid" type="hidden" value="12345678">...

HTTP/1.1 200 OK
...
Content-Type: text/html; charset=UTF-8

HTTP Response

Perl

HTML

3.5 Case Studies (Cross-Site Scripting)

81

of them, the comments ($comment) and the user ID ($uid䋩, are to be outputted onto the confirmation

page. While the web application performs escaping for the comments when they are entered, it does not

do so on the user ID. This is an example where the developers implement some but insufficient measures

due to not properly knowing what elements should go through escaping process.

䇼What’s Wrong?䇽

One of the common misunderstandings over escaping is that the text enterable fields are the only

elements that need to go through escaping process.

Attacks are not limited to text enterable fields, such as a comment field in a message posting form.

Focusing on particular elements, such as text enterable fields, leads to missing other elements. Likewise,

performing escaping for the values when they are entered right away, albeit it could be a good display of

countering attacks at the earliest possible opportunity, could lead to missing what really needs to be done.

The elements that should go through escaping process to prevent cross-site scripting attacks are the

“output elements”. If you perform escaping for the “input elements”, you will miss the cases where an

arithmetic operation right before outputting the web page is used to generate malicious HTML tags and

scripts. It also makes it costly to determine from the source code whether escaping is done for indeed all

the necessary elements.

䇼Corrective Measure䇽

 Perform escaping focusing on “output elements”

Do not mind the input elements. Rather, focus on the output elements and perform escaping for them.

䇼Common Mistake #1䇽

 Did not perform escaping for the elements that would make up links (URLs)

In the picture above, “cid”, “page”, “pmax” and “ls” are used as the parameters to make up a URL

of the links, such as “Previous” and “Next”. These elements outputted in the tags should go through

escaping process too, but this operation is often forgotten.

Products

Previous 1 2 3 Next

Next

Products

Previous 1 2 3 Next

Next

$comment = param('comment');
$agree = param('agree');
$uid = param('uid');
...
print escapeHTML($comment);...
print "<input ... hidden ... =\"".escapeHTML($uid)."...

Do not mind input elements

Escape all output elements

Perl

3.5 Case Studies (Cross-Site Scripting)

82

䇼Common Mistake #2䇽

 Did not perform escaping for the URL to display on the “404 Not Found” error page

In the picture above, the web application outputs the URL originally requested by the user on the error

page for the HTTP status code 404. This URL information should go through escaping process too, but

many web applications miss it.

For example, cross-site scripting attacks will succeed by luring the user to a booby-trapped URL like

shown below.

䇼Common Mistake #3䇽

 Did not perform escaping for access log information to be outputted

This could be a web application that outputs the statistics information about a web page based on

web server access logs. For example, it may show the pages the users have requested, the

User-Agent and Referer information. In many cases, a web application likely does not perform

escaping when it uses the server’s internal data.

For example, a malicious attacker could send a request where scripts are set in the elements, such

as the User-Agent and Referer, and have them logged in to the access log.

The requested file does
not exist on the server.
The requested file does
not exist on the server.

Access LogsAccess Logs

GET /example.html / HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0...<script>...
Referer: http://example.net/<script>...

http://example.com/<script>...</script>

URL

HTTP Request

3.5 Case Studies (Cross-Site Scripting)

83

Provided that, if escaping is not done, the users who view the access log page will keep accessing the

script-embedded web page almost permanently.

䇼Common Mistake #4䇽

 Did not perform escaping for web mail information to be outputted

This could be a web application that outputs email information on the web page. For example, it may

show the sender, subject and contents of email. In many cases, web applications neglect escaping when

they use the server’s internal data.

For example, a malicious attacker could send an email crafted like below.

Provided that, if escaping is not done, the users who view the webmail page will keep accessing the

script-embedded web page almost permanently.

WebMail

䂔 Revised! “Secure Web...
䂔 [ipa-121] xxxxxxxxx
䂔 Hey, how is your day...

WebMail

䂔 Revised! “Secure Web...
䂔 [ipa-121] xxxxxxxxx
䂔 Hey, how is your day...

To: jiro@example.com
From: taro@example.com
Subject: Revised!”Secure Web Site...<script>...
Body: IPA hopes you have been...<script>...

Email

3.5 Case Studies (Cross-Site Scripting)

84

3.5.3 Misguided Countermeasures

Ṳ Implement checking function for user input

䇼Vulnerable Implementation䇽

This sample program embeds a user input check mechanism into the input form page using JavaScript.

Through this checking function, only permitted values are to be passed over to the outputting process of

the web application. This tends to make us think no unintended characters would be outputted on the

confirmation page, but in fact this input checking does not work well against cross-site scripting

vulnerability.

䇼What’s Wrong?䇽

This sample is implementing the right measure in the wrong place. Client-side input validation is

effective for reducing user input error but not for countering cross-site scripting vulnerability. In most

cross-site scripting attacks, malicious requests are sent directly to the vulnerable web application through

the trap (hyperlinks in email or on web page) set up by malicious attackers, and thus bypass client-side

input validation like shown above.

In addition, input validation could not be a fundamental solution for it is almost impossible to cover

everything you should not accept to counter cross-site scripting vulnerability. Read Chapter 1-5

“Cross-Site Scripting” and take appropriate action.

Ṳ Take blacklist approach only

䇼Vulnerable Implementation䇽

Registration
https://...

Confirm

<script ...
function Check(){
...

</script>
...
<input value=“Confirm"
onClick="Check();">

Pass to web
application
when valid

Ask retry when invalid

Output
Confirmation Page

Web
Application

Confirmation Page

Name

if ($a =~ /(script|expression|...)/i){ # check input
 error_html(); # if detecting dangerous value, return error message
 exit;
} else {
 ...
 print $a; # if no dangerous value is detected, then proceed

Perl

3.5 Case Studies (Cross-Site Scripting)

85

This sample program takes blacklist approach for implementing input validation. The blacklist here

defines potentially dangerous characters often used in cross-site scripting as unacceptable values. For

example, when an input value $a includes suspicious strings, such as “script”, the web application

cancels processing and returns an error.

At the first look, it may look like this works well to nullify cross-site scripting attacks, but this

implementation has a vulnerability an attacker could exploit to bypass the input validation function.

䇼What’s Wrong?䇽

 Bypass input checking using control characters

Input validation does not offer a fundamental solution to cross-site scripting vulnerability.

For example, if the following string is entered to $a, input validation against a string “script” will

be bypassed.

After bypassing input validation, “%00” in $a will be decoded and outputted to the web page as a

NULL character. Web browsers often ignore the NULL character, and as a result, the value of $a will be

interpreted as a script. That says a simple pattern-matching input validation function cannot prevent

scripts from being inserted. There are more control characters attackers could use to bypass input

checking besides the NULL character.

䇼Common Mistake #1䇽

 Bypass input checking using input concatenation

This problem occurs with a web application that takes blacklist approach for implementing input

validation. The input form offers multiple fields for the address information where a user enters it in

some units, such as prefecture and municipality. The input validation function checks whether an input

value contains the unacceptable strings defined by the blacklist, such as “script”, and if positive, have

the application stop processing further. After input checking, those multiple field values are concatenated

to form address information like the following.

Addres
s

...Honkomagome

Bunkyo-ku

Tokyo

Enter separately
in multiple fields

Confirmation Page

Address:

 Honkomagome
Bunkyo-ku Tokyo

Concatenate
related field valus

<s%00cript>alert(0)</s%00cript>

TXT

3.5 Case Studies (Cross-Site Scripting)

86

Let’s see what will happen when the input data shown below are entered.

Variable Value
$addr1 <scr
$addr2 ipt>alert(1)</s
$addr3 cript>

None of these parameters on its own contains a string “script”, thus each parameter value will be

accepted. After passing input checking, these three values are concatenated and form the following string.

This issue still remains even if you have solved the previous problem of bypassing input validation

using the control characters.

Input checking cannot in nature deal with the cases where scripts are to be formed as a result of

arithmetic operations after checking is performed. We recommend that you complement input checking

with some other fundamental solutions.

䇼Common Mistake #2䇽

 Bypass input checking abusing match-then-delete reaction

This sample program implements input validation in a way that a web application deletes strings that

match the unacceptable values defined in the blacklist. For example, if $a contains a string “script”,

the input checking function removes the string and outputs the rest.

Suppose that the following string is entered to $a.

The application will perform deletion based on the blacklist and output the result shown in the

following box. The script tags are nullified and the attack fails.

<>alert(1)</>

<script>alert(1)</script>

$a =~ s/(script|expression|...)//gi;
...
print $a;

<script>alert(1)</script>

if ($addr1 =~ /script/i){ # check input (same for $add2 and $add3)
 error_html(); # if detecting dangerous value,
 exit; # return error message
} else {
 ...
 print $addr1.$addr2.$addr3; # concatenate checked values

Perl

Perl

TXT

TXT

TXT

3.5 Case Studies (Cross-Site Scripting)

87

Let’s see what will happen with this one.

The application performs deletion and outputs the following result, which turns out to be a script.

As you see, simply deleting dangerous strings is not recommended for that very operation may be

exploited to help the formation of scripts. When removing the dangerous strings, we recommend

replacing them with harmless strings instead of deleting them.

For more information, see 1.5.2 Mitigation Measure 5-(vii).

<script>alert(1)</script>

<sscriptcript>alert(1)</sscriptcript>

HTML

TXT

3.6 Case Studies (CSRF)

88

3.6 CSRF (Cross-Site Request Forgery)

In this section, we present a sample user registration program that is vulnerable to CSRF (Cross-Site

Request Forgery).

Ṳ A PHP program that registers user information

䇼Vulnerable Implementation䇽

The following figures shows an example of typical web page flow when updating the user information

registered for a members-only website. Here, the user is changing his address from New York to Los

Angeles.

In this website’s structure, the user first confirms his user information currently registered on the Page

1 (view.php) and clicks the “Edit” button to proceed to Page 2 (edit.php) if he wants to change his

profile. There, he edits the information, enters the password and moves to Page 3 (confirm.php). On

Page 3, the user is required to confirm the changes he has made and click the “Update” button, which

executes the changes and puts the process forward to Page 4 (commit.php) where the result of editing is

presented.

On Page 2, the password is required to authenticate the user and only if the password is correct, then

http://䂾䂾/view.php

Edit

Name

User Information
John Doe

Address NY

http://䂾䂾/edit.php

Confirm

Name

Edit User Information
John Doe

Address

http://䂾䂾/conf irm.php

Name

Confirm the Edit
John Doe

Address LA

http://䂾䂾/commit.php

Back

Name

Update Completed
John Doe

Address LA

Please enter the password.

䂯LA

Back

UpdateBack

Page 1 Page 2

Page 3 䋼Confirmation Page䋾 Page 4 䋼Update Page䋾

3.6 Case Studies (CSRF)

89

the user can proceed to Page 3.

Let’s assume that the HTML source code for Page 3 is written like the following.

When the user clicks the “Update” button on Page 3, the following code in commit.php, the source

code for Page 4, executes the update. The $_SESSION['authenticated'] variable stores the

information whether the user has logged in as a true or false value.

The second line checks if the user has logged in, but it does not check whether the profile change

request has indeed been made by the logged-in user, which makes the whole process vulnerable to

cross-site request forgery.

䇼What’s Wrong?䇽

If the user is lured to a malicious website while logged in to this members-only website, an attacker

could forge and redirect a user request to Page 4 and execute the profile change without and against the

user’s will.

The following is an example of an HTML source code embedded in malicious websites. It is similar to

the source code for Page 3, but the lines written in red are different. In this case, a CSRF attack is

executed just by accessing the malicious website.

session_start();
if(! $_SESSION['authenticated']) { exit(); }
update_userinfo($_SESSION['uid'],$_POST['new_name'], $_POST['new_address']);

<form action="commit.php" method="post">
 <input type="hidden" name="new_name" value="John Doe">
 <input type="hidden" name="new_address" value="LA">
 <input type="submit" name="back" value="Back">
 <input type="submit" name="commit" value="Update">
</form>

HTML

PHP

3.6 Case Studies (CSRF)

90

The commit.php program in the sample program cannot discern the difference between a rightful

request made by the user and a request forged by an attacker and executes the change request.

When implementing the feature where logged-in users change the settings or post stuff, be aware of

cross-site request forgery and implement necessary measures.

䇼Corrective Measure #1䇽

 Embed a secret information in the confirmation page and check it in the update page

By embedding a secret in the confirmation page and later confirming it in the update page, the

underlying cause of the CSRF vulnerability will be removed.

In the sample code, Page 3 corresponds to the confirmation page and Page 4 corresponds to the update

page. With the following sample modified program, the PHP session ID is used as a secret.

First, embed the session ID to Page 3 (shown in red).

Next, the commit.php program for Page 4 checks the value of the secret. Make sure to check it before

executing the changes. If the secret is not correct, stop the process. The modified commit.php program

would be like the following (added the line written in red).

This measure requires that you can generate a secret in the way that the third parties cannot figure out

and store it safely, and that you can use the POST method to pass the secret to the update page. If you

cannot satisfy all three of them, then other measures should be considered.

䇼Corrective Measure #2䇽

 Check the password in the update page

By requiring the password on the confirmation page and confirming the password in the update page

right after that, the underlying cause of the CSRF vulnerability will be removed.

session_start();
if(! $_SESSION['authenticated']) { exit(); }
if($_POST['sid'] != session_id()) { exit(); }
update_userinfo($_SESSION['uid'],$_POST['new_name'], $_POST['new_address']);

<form action="commit.php" method="post">
 <input type="hidden" name="new_name" value="John Doe">
 <input type="hidden" name="new_address" value="LA">
 <input type="hidden" name="sid" value="6a0752gpmhignmnq9f5iah8h71">
 <input type="submit" name="back" value="Back">
 <input type="submit" name="commit" value="Update">
</form>

<form action="http://̵̵ŵ������Ŝ���" method="post" name="f1">
 <input type="hidden" name="new_name" value="Cracker Joe">
 <input type="hidden" name="new_address" value="NY">
</form>
<script>document.forms['f1'].submit();</script>

HTML

HTML

PHP

3.6 Case Studies (CSRF)

91

In the sample program, the password is required in Page 2 and checked in Page 3. By changing it to

require the password in Page 3 and check it in Page 4, the CSRF vulnerability will be removed.

Edit

Name

User Information
John Doe

Address NY

Confirm

Name

Edit User Information
John Doe

Address

Name

Confirm the Edit
John Doe

Address LA

Back

Name

Update Completed
John Doe

Address LA

䂯LA

Update

Please enter the password.

Page 1 Page 2

http://䂾䂾/view.php http://䂾䂾/edit.php

http://䂾䂾/conf irm.php http://䂾䂾/commit.php

Page 3 䋼Confirmation Page䋾 Page 4 䋼Update Page䋾

3.6 Case Studies (CSRF)

92

This measure requires the modification of the user interface. If it is not feasible, then another measure

should be considered.

䇼Corrective Measure #3䇽

 Check the Referer in the update page

By checking the Referer in the update page, the underlying cause of the CSRF will be removed. Here,

the commit.php program in the sample code was modified like the following (added the line written in

red).

As a side effect, note that this measure cannot execute the change requests if the user’s browser is set

not to send the Referer field or the user is accessing the website through the proxy server that removes

the Referer from the HTTP requests made by the user’s browser.

session_start();
if(! _SESSION['authenticated']) { exit(); }
if($_SERVER['HTTP_REFERER'] != 'http://̵̵ŵ�������Ŝ���ɐ�ƀ�Ƈ�����ſƀŚ�ƈ
update_userinfo($_SESSION['uid'],$_POST['new_name'], $_POST['new_address']);

PHP

3.7 Case Studies (HTTP Header Injection)

93

3.7 HTTP Header Injection

In this section, we present a sample redirector program that is vulnerable to HTTP header injection.

Ṳ A Perl program that executes URL redirection

䇼Vulnerable Implementation䇽

The above is part of a program that redirects a website visitor to a predefined URL using the Location

header. The sample program above first inputs the value of the num parameter into the $num variable (the

second line). The program then creates the Location header based on the value of $num and outputs an

HTTP response. The program assumes that only numerical numbers are entered as the value of the num

parameter.

This implementation simply ignores the possibility where a value that includes the line break

characters may be specified for the num parameter and allows an attacker to create unexpected HTTP

responses.

䇼What’s Wrong?䇽

In this implementation, if a visitor accesses the URL where its num parameter is set with

3%0D%0ASet-Cookie:SID=evil, malicious arbitrary cookie will be issued. Moreover, the visitor may

be redirected to a fraudulent web page depending on the way the parameter value is crafted.

䇼Corrective Measure䇽

 Forbid the line break characters as the parameter values used to create the header

By properly restricting the use of the line break characters, the underlying cause of the HTTP header

injection vulnerability will be removed.

The function that returns the first line of a multi-line string
Parameter: String. Ignore anything other than the first parameter
Return value: A string before the line breaker (\r, \n, \r\n)
sub first_line {
 $str = shift;
 return ($str =~ /^([^\r\n]*)/)[0];
}

HTTP/1.x 302 Found
Date: Sat, 07 Mar 2009 01:49:48 GMT
Server: Apache/2.2.3 (Unix)
Set-Cookie: SID=evil
Location: http://example.jp/index.cgi?num=3
Content-Length: 292
Connection: close
Content-Type: text/html; charset=iso-8859-1

$cgi = new CGI;
$num = $cgi->param('num');
print "Location: http://example.jp/index.cgi?num=$num\n\n";

Perl

Perl

HTTP Response

3.7 Case Studies (HTTP Header Injection)

94

The above is a function that returns the first line (without the line break character at the end of the

line) of the string passed by the parameter. By having the parameter value entered externally go through

this function, the program can ensure the output value is appropriate as the value for the HTTP response

header field and therefore remove the vulnerability.

The HTTP header field does allow a multi-line string as its value but the function above is written in

the way that does not support it. Note that the use of this function is inappropriate for the web application

with which a multi-line string is expected for the HTTP header filed value since the second line and the

lines after that will be discarded by it.

3.8 Mail Header Injection

In this section, we present a sample enquiry form program that is vulnerable to mail header injection.

Ṳ An email sending function with Perl

䇼Vulnerable Implementation䇽

The above is part of a program that sends the user’s input into the enquiry form as an email to the

website administrator59

59 When using a character set other than US-ASCII in the mail header, it must be encoded following RFC2047.

. When the user enters the value to the name, email address and enquiry field on

the Page 1 and clicks the send button, the program calls the sendmail command provided by OS and

sends an email to the website administrator’s email address info@example.com. When the program

sends the email, the user input for each header is stored into the $name, $email and $inquiry variable

open (MAIL, "| /usr/sbin/sendmail -t -i");
print MAIL << "EOF";
To: info\@example.com
From: $email
Subject: Enquiry ($name)
Content-Type: text/plain; charset="ISO-2022—JP"

$inquiry
EOF
close (MAIL);

Perl

3.8 Case Studies (Mail Header Injection)

95

and then creates the mail headers and body using those variables. After completing sending the email, the

program outputs the Page 2.

This implementation is vulnerable to mail header injection since it outputs the user input value directly

into the mail header.

䇼What’s Wong?䇽

In this implementation, the program passes the mail headers and body to the sendmail’s standard input

to send email. The sendmail command determines the destination email addresses based on the input for

the To, Cc and Bcc header. If the user input on the Page 1 is “anzen” (the name field),

“anzen@example.net” (the source IP address field) and “Hello, World” (the body field), the

program sends the email shown below to info@example.com.

However, if a user feeds the input value including a line feed character and mail headers to the name

field or the email address field, the user can sends the email to arbitrary destination addresses. For

example, if the user input for the mail address field is

“anzen@example.net%0d%0aBcc%3a%20user@example.org”, the passing data from the program

to the sendmail command will be the following. The sendmail command will send the email to

user@example.org in addition to info@example.com based on the user input passed from the

program.

䇼Corrective Measure #1䇽

 Do not output the user input value into the mail header

By not outputting the user input into the mail headers, the underlying cause of the mail header

injection vulnerability will be removed.

To: info@example.com
From: anzen@example.net
Bcc: user@example.org
Subject: Enquiry(anzen)
Content-Type: text/plain; charset="ISO-2022—JP"

Hello, World

To: info@example.com
From: anzen@example.net
Subject: Enquiry(anzen)
Content-Type: text/plain; charset="ISO-2022—JP"

Hello, World

TXT

Mail

3.8 Case Studies (Mail Header Injection)

96

With this corrective measure, the input value stored in the $name and $email variable is not outputted

into the mail headers but into the mail body. The value for the From and Subject header is fixed to

webform@exmaple.com and Enquiry, respectively. If line feed character is included in the value for

the $name or $email valuable, the layout of the body will be disrupted a little but this measure can

prevent arbitrary mail headers from being inserted60

䇼Corrective Measure #2䇽

 Remove line feed character from the value for the mail header variables

.

Removing the line feed characters from the values for the mail header variables will mitigate the risk

of mail header injection vulnerability.

In this corrective measure, the line feed characters (\r and \n) are removed from the value of the

$name and $email variable using regular expressions.

60 If the program is written to reply to the user automatically upon receiving the enquiry, the program can still be exploited to

send out spam mails even if this corrective measure is implemented.

$name =~ s/\r|\n//g;
$email =~ s/\r|\n//g;

open (MAIL, "| /usr/sbin/sendmail –t -i");
print MAIL << "EOF";
To: info\@example.com
From: webform\@exmaple.com
Subject: Enquiry
Content-Type: text/plain; charset="ISO-2022—JP"

==
Name: $name
Email Address: $email
==
$inquiry
EOF

Perl

Perl

Postface

97

Postface

Security practices to secure web applications and websites we have presented in this book will help you

mitigate the threats the website operators are facing. Once security implementation and internal checking

are done, it is beneficial to have a third-party entity perform penetration test or code review to assure secure

implementation. It is recommended a website undergo an external vulnerability testing depending on the

importance the website has on you or your organization’s success.

We hope this book will help you secure your website.

References

98

References

Ministry of Internal Affairs and Communications,
Japan: Communications Usage Trend Survey
http://www.soumu.go.jp/johotsusintokei/sta
tistics/statistics05.html (Japanese Only)

IPA䋺 ⣀ᒙᕈ㑐ㅪᖱႎ䈱ዯ
http://www.ipa.go.jp/security/vuln/report/
index.html (Japanese Only)

IPA䋺 ⍮䈦䈩䈇䉁䈜䈎䋿⣀ᒙᕈ䋨䈟䈇䈛䉆䈒䈞
䈇䋩
http://www.ipa.go.jp/security/vuln/vuln_co
ntents/ (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ䋨ᣂ 䋩
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/web.html (Japanese Only)

IPA䋺 ⣀ᒙᕈ㑐ㅪᖱႎ䈮㑐䈜䉎ዯ⁁ᴫ
http://www.ipa.go.jp/security/vuln/report/
press.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉋䉍⦟䈇
Web 䉝䊒䊥䉬䊷䉲䊢䊮⸳⸘䈱䊍䊮䊃䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/003.html
(Japanese Only)

IPA㧦 ࠣࡦࡒࠣࡠࡊࠕࡘࠠ⻠ᐳ ޟSQL
ᵈ㧦#1 ታⵝࠆߌ߅ߦኻ╷ޠ
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/502.html
(Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸SQL ᵈ
䋺#2 ⸳ቯ䈮䈍䈔䉎ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/503.html
(Japanese Only)

IPA䋺 Information Security White 2009 Paper
Part 2
http://www.ipa.go.jp/security/vuln/documen
ts/10threats2009_en.pdf

IPA䋺 ᖱႎ䉶䉨䊠䊥䊁䉞⊕ᦠ 2008 ╙ 2 ㇱ
http://www.ipa.go.jp/security/vuln/2008052
7_10threats.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉮䊙䊮䊄
ᵈ᠄ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/501.html
(Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊒䊨䉫䊤
䊛䈎䉌䈱䊐䉜䉟䊦ᵹኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/402.html
(Japanese Only)

Westpoint㧦 Multiple Browser Cookie Injection
Vulnerabilities
http://www.westpoint.ltd.uk/advisories/wp-
04-0001.txt

ACROS Security 㧦 Session Fixation
Vulnerability in Web-based Applications
http://www.acrossecurity.com/papers/sessio
n_fixation.pdf

IPA䋺 ⚻〝䈱䉶䉨䊠䊥䊁䉞䈫หᤨ䈮䉶䉨䊠䉝䈭䉶
䉾䉲䊢䊮▤ℂ䉕
http://www.ipa.go.jp/security/ciadr/200308
08cookie-secure.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉶䉾䉲䊢䊮
ਸ਼䈦ข䉍䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/302.html
(Japanese only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/303.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/304.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/305.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/306.html
(Japanese Only)

IPA䋺 䉶䉾䉲䊢䊮▤ℂ
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/chap6/6_session-1.h
tml (Japanese Only)

IPA䋺 䉶䉾䉲䊢䊮▤ℂ䈱⇐ᗧὐ
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/chap6/6_session-2.h
tml (Japanese Only)

↥ᬺ✚วᛛⴚ⎇ⓥᚲ 㜞ᧁᶈశ䋺䇸CSRF䇹䈫
䇸Session Fixation䇹䈱⻉㗴䈮䈧䈇䈩
http://www.ipa.go.jp/security/vuln/event/d
ocuments/20060228_3.pdf (Japanese Only)

W3C㧦 HTML 4.01 Specification
http://www.w3.org/TR/html401/

Microsoft㧦 Mitigating Cross-site Scripting With
HTTP-only Cookies
http://msdn2.microsoft.com/en-us/library/m
s533046.aspx

References

99

Bugzilla@Mozilla㧦 MSIE-extension: HttpOnly
cookie attribute for cross-site scripting
vulnerability prevention
https://bugzilla.mozilla.org/show_bug.cgi?
id=178993

WhiteHat Securityᾉ Cross-Site Tracing
http://www.cgisecurity.com/whitehat-mirror
/WH-WhitePaper_XST_ebook.pdf

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉣䉮䊷䊋
䉾䉪ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/601.html
(Japanese Only)
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/602.html
(Japanese Only)

RFC2616 ᾉ Hypertext Transfer Protocol --
HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊥䉪䉣䉴䊃
ᒝⷐ䋨CSRF䋩ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/301.html
(Japanese Only)

Amit Kleinᾉ HTTP Response Smuggling
http://www.securityfocus.com/archive/1/425
593/30/0/threaded

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸HTTP 䊧
䉴䊘䊮䉴䈮䉋䉎䉨䊞䉾䉲䊠னㅧ᠄ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/603.html
(Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊜䊷䊦䈱
╙ਃ⠪ਛ⛮ኻ╷䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/201.html
(Japanese Only)

The Unauthorized Computer Access Law
http://www.npa.go.jp/cyber/english/legisla
tion/ucalaw.html

JVN ίJapan Vulnerability Notesὸ
http://jvn.jp/en/index.html

JVN iPedia Vulnerability Countermeasure
Information Database
http://jvndb.jvn.jp/index_en.html

IPA䋺 䊌䉴䊪䊷䊄䈱▤ℂ䈫ᵈᗧ
http://www.ipa.go.jp/security/fy14/content
s/soho/html/chap1/pass.html (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䉶䉨䊠䉝
䈭 Web 䉰䊷䊋䈱᭴▽䈫ㆇ↪䈮㑐䈜䉎䉮䊮䊁䊮
䉿䇹
http://www.ipa.go.jp/security/awareness/ad
ministrator/secure-web/ (Japanese Only)

IPA䋺 䊄䊜䉟䊮ฬ䈱⊓㍳䈫 DNS 䉰䊷䊋䈱⸳ቯ䈮
㑐䈜䉎ᵈᗧ༐
http://www.ipa.go.jp/security/vuln/2005062
7_dns.html (Japanese Only)

IPA䋺 㔚ሶ䊜䊷䊦䈱䉶䉨䊠䊥䊁䉞
http://www.ipa.go.jp/security/fy18/reports
/contents/email/email.pdf (Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸䊡䊷䉱
⸽ኻ╷ 䊌䉴䊪䊷䊄䊐䉞䊦䉺䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/101.html
(Japanese Only)

IPA䋺 PKI 㑐ㅪᛛⴚ⸃⺑ 䇸⸽ዪ䈫㔚ሶ⸽
ᦠ䇹
http://www.ipa.go.jp/security/pki/031.html
(Japanese Only)

IPA䋺 䉶䉨䊠䉝䊶䊒䊨䉫䊤䊚䊮䉫⻠ᐳ 䇸⌀ᱜᕈ䈱
ਥᒛ䇹
http://www.ipa.go.jp/security/awareness/ve
ndor/programmingv2/contents/202.html
(Japanese Only)

↥ᬺᛛⴚ⎇ⓥᚲ䋺 ో䈭 Web 䉰䉟䊃↪䈱㋕
ೣ
http://www.rcis.aist.go.jp/special/websafe
ty2007/ (Japanese Only)

Terminology

100

Terminology

Web Application
A software system that runs on a website. Usually
written in Java, ASP, PHP and Perl, and allows to
produce and offer dynamic web pages to users.

Escaping
A process to neutralize the characters that have a
special meaning, which signifies an alternative
interpretation and triggers a special processing
depending on languages and environments,
generally by replacing them with another
characters and makes them non-special.

Encoding
A process of putting a sequence of characters
(letters, numbers, symbols etc) into a specialized
format based on a predefined rule. For example,
the characters that cannot appear in a URL, such
as Japanese letters, must be “encoded” into %
and hexadecimal numbers based on RFC2396.

Line Break Codes
Control codes that signify line break in text. In
general, CR (Carriage Return), LF (Line Feed),
or a combination of these two is used. In the
ASCII Code Table, CR and LF are defined “0x0D”
and “0x0A”, respectively.

Shell
The program that interprets user input then runs
and controls other programs. cmd.exe is an
example for Windows shell and bash and csh for
UNIX/LINUX shell.

Vulnerability
A security weakness that computer software, such
as web applications, could have. It could be a
cause of a web application losing its normal
functions or performance due to unauthorized
access or computer virus exploiting the security
weakness. It could also mean a situation in which
web application security is no longer maintained,
as seen in the cases where personal information is
not protected by appropriate access control
because of improper website operation.

Session Management
A mechanism with which a website tracks a
user’s activities across web pages (requests) to
identify the user and keep the state of his or her
operations.

Directory Traversal
An attacking method that exploits relative paths
to move around and access arbitrary files in a
target system. The name originates from its
ability to freely traverse directories in the system.
Also known as path traversal.

Decoding
A process of converting an encoded format back
into the original sequence of characters.

Blacklist
A filtering mechanism opposite to whitelist. Deny
those strings that are predefined on the list and
allow everything else. It cannot cope with
unknown attacks, which cannot be defined on the
list beforehand.

Whitelist
A filtering mechanism opposite to blacklist.
Allow those strings on the list and deny
everything else. It can well cope with unknown
attacks and safer than blacklist, but may be
difficult to implement in some cases.

Cookie
A mechanism to exchange information, such as
user data and access data, between a web server
and browser.

SQL
A programming language designed for the
manipulation and management of data in
relational database (RDB). Divided into two
major categories: DDL (Data Definition
Language) for defining the database objects, such
as structure and scheme, and DML䋨Data
Manipulation Language䋩 for manipulating and
controlling access to data, such as SELECT,
UPDATE and GRANT.

Checklist

101

Checklist

The checklist provided here is a list of countermeasures against the web application vulnerabilities

discussed in this book. When you perform security checking for your website, make use of this checklist

and write down whether or not you need to implement countermeasures and if you have implemented

countermeasures or not, to make sure that you have secured your website.

 How to use the checklist ع
Check one that describes your situation best.

Ƒ�'RQH

Select this one when countermeasures have been already implemented.

Ƒ�1RW�<HW

Select this one when you realize you need to implement countermeasures but for some reason

have not done yet.

Ƒ�1R�1HHG

Select this one when the vulnerabilities do not apply to your website or you judge your website

is well protected in other ways and does not require these countermeasures.

 Note ع

Ὁ It depends on web applications whether they require all, part of or none of the countermeasures

discussed in this book. Please remember that the countermeasures discussed in this book are some

examples of many possible solutions out there. Read the explanations carefully and understand the

effects the countermeasure you are going to act on may have on your system before implementing

it.

Ὁ Some countermeasures say “implement either one of them” or “implement this alternative when

said countermeasure is not implementable (e.g.: the fundamental solutions to SQL Injection

vulnerability 1-(i)-a and 1-(i)-b). We have put these countermeasures together into one check item.

Check the “Done” box when you have implemented either one of the countermeasures listed and

mark which one you have adopted.

Ὁ The fundamental solutions aim to enable a web application not to have vulnerability to begin with

and thus most recommended. In the checklist, the fundamental solutions are bolded and colored so

that you can see which ones are the fundamental solutions.

Checklist

102

No
Type of
Measure Checkbox Measure

Refer
To

䂔 Build all SQL statements using placeholders. 1-(i)-a

䂔

When building an SQL statement through concatenation, use a special
API offered by the database engine to perform escaping and make up
the literals in the SQL statement correctly.

1-(i)-b

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Do not write SQL statement directly in the parameter to be passed to
the web application.

1-(ii)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Limit information to display in error message on the web browser. 1-(iii)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Grant minimum privileges to database accounts. 1-(iv)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

䂔 Avoid using functions which could call shell commands. 2-(i)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

䂔

When using functions which could call shell commands, check all
variables that make up the shell parameters and make sure to execute only
those that are granted to be executed.

2-(ii)

䂔
Do not specify name of files stored on the web server directly using
external parameter.

3-(i)-a

䂔
Use a fixed directory to handle filenames and nullify directory names
in filenames.

3-(i)-b

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Manage file access permission properly. 3-(ii)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Check filenames. 3-(iii)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Make session ID hard to guess. 4-(i)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Do not use URL parameters to store session ID. 4-(ii)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Set the secure attribute of the cookie when using HTTPS. 4-(iii)

䂔 Start a new session after successful login. 4-(iv)-a

䂔
Issue a secret after login and authenticate the user with it whenever
the user moves around the web site.

4-(iv)-b

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Use random session ID. 4-(v)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Set the cookie’s expiration date with care when storing session ID in
cookie.

4-(vi)

Unchecked Path Name Parameter
/ Directory Traversal

,PSURSHU�6HVVLRQ�0DQDJHPHQW

* Check if either one of the measures has been implemented

7\SHV�RI�9XOQHUDELOLW\

1 SQL Injection

OS Command Injection

Fundamental

*
䂔 Done
䂔 Not Done
䂔 N/A

2

Fundamental

*
䂔 Done
䂔 Not Done
䂔 N/A

3

4

Fundamental

*
䂔 Done
䂔 Not Done
䂔 N/A

Checklist

103

No
Type of
Measure Checkbox Measure

Refer
To

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Perform Escaping for everything to be outputted to the web page. 5-(i)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

When outputting URLs in HTML, permit only those that start with
certain patterns, such as “http://” and “https://”.

5-(ii)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Do not dynamically create the content of the <script>...</script> tag. 5-(iii)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Do not allow to import stylesheets from arbitrary websites. 5-(iv)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Check input values. 5-(v)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Create a parse tree from the HTML text input and extract only the
necessary elements that do not contain scripts.

5-(vi)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Nullify script strings in HTML text input. 5-(vii)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Set the charset parameter of the HTTP Content-Type header. 5-(viii)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Set the HttpOnly attribute of the cookie and disable the TRACE method to
prevent disclosure of cookie information. 5-(ix)

䂔

Access the web page, in which certain operation is to be executed, via
the POST method with a secret having the previous web page insert it
in its hidden filed, and execute the requested operation only when the
secret is correct.

6-(i)-a

䂔
Ask for password right before executing requested operation and
proceed only when the password is correct.

6-(i)-b

䂔
Check the Referer whether it is the expected URL and proceed only
when the URL is correct.

6-(i)-c

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Notify to the prespecified email address automatically when important
operations have been done. 6-(ii)

䂔

Do not print out HTTP header directly and do it through an HTTP
header API provided by execution environment or programming
language.

7-(i)-a

䂔
If HTTP header API that offers line feed neutralization is not
available for use, implement it manually.

7-(i)-b

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Remove all line feed characters that appear in the external text input. 7-(ii)

䂔
Use the fixed values for the header elements and output all external
input to the email body.

8-(i)-a

䂔

If 8-(i) is not implemented, the fixed values cannot be used for the
header, use an email-sending API offered by the web application’s
execution environment or language.

8-(i)-b

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Do not specify the email addresses in HTML. 8-(ii)

Mitigation
䂔 Done
䂔 Not Done
䂔 N/A

Remove all line feed characters that appear in the external text input. 8-(iii)

* Check if either one of the measures has been implemented

Cross-Site
Scripting

5

Measures common to all
web applications

*
Ƒ�'RQH
Ƒ�1RW�'RQH
Ƒ�1�$

*
䂔 Done
䂔 Not Done
䂔 N/ACSRF

(Cross-Site Request Forgery)

Measures for Web
Applications That Do
Not Permit HTML
Text Input

Fundamental

7

Fundamental

Mail Header Injection8

*
䂔 Done
䂔 Not Done
䂔 N/AHTTP Header Injection

7\SHV�RI�9XOQHUDELOLW\

6

Fundamental

Measures for Web
Applications That
Permit HTML text
Input

Checklist

104

No
Type of
Measure Checkbox Measure

Refer
To

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

When a web site needs access control, implement an authentication
mechanism that requires users to enter some kind of secret
information, such as password.

9-(i)

Fundamental
䂔 Done
䂔 Not Done
䂔 N/A

Implement authorization as well as authentication to make sure that a
login user cannot pretend to be other users and access their data.

9-(ii)

* Check if either one of the measures has been implemented

7\SHV�RI�9XOQHUDELOLW\

9
Lack of Auhtentication
and Authorization

CWE Mapping Table

105

CWE Mapping Table

CWE (Common Weakness Enumeration) is a system to identify the types of vulnerabilities that come in

a wide variety. CWE gives a hierarchically structured list of vulnerability types and allocates a CWE

identifier (CWE-ID) to each type. The use of CWE will enable software developers and security experts to:

Ὁ Have a common language to discuss vulnerability in software architecture, design and code.

Ὁ Use as a standard measuring rule for security tools, such as vulnerability scanning tool, to enhance

software security.

Ὁ Use as a common foundation to understand, mitigate and prevent vulnerability.

The table in the following page shows the mapping between the vulnerabilities addressed in this book

and CWE. When implementing countermeasures individually based on CWE or checking the completeness

of the countermeasures implemented, use the table as reference.

ⅆ References

IPA: CWE (Common Weakness Enumeration) Overview
http://www.ipa.go.jp/security/english/vuln/CWE_en.html

CWE Mapping Table

106

No
CWE Version 1.5

䋨Japanese䋩
CWE Version 1.11

䋨English䋩

1 SQL Injection 䋨CWE-89䋩

2 OS Command Injection
(CWE-78)

3 Path Traversal 䋨CWE-22䋩

Insufficiently Protected
Credentials (CWE-522)

5 Cross-Site Scripting 䋨XSS䋩
䋨CWE-79䋩

6
Cross-Site Request
Forgery 䋨CWE-352䋩

7

8
Improper Neutralization of
CRLF Sequences (CWE-
93)

Permissions, Privileges,
and Access Controls
䋨CWE-264䋩

 Improper Authentication
䋨CWE-287䋩

Cross-Site Scripting

CSRF
(Cross-Site Request Forgery)

HTTP Header Injection

Third Party Mail Relay

9 Lack of Authentication and
Authorization

"How to Secure Your Website"
Types of Vulnerability

SQL Injection

OS Command Injection

Unchecked Path Parameters /
Directory Traversal

4 Improper Session Management

Improper Neutralization of Special

Elements used in an SQL

Command
('SQL Injection') (CWE-89)
 Improper Neutralization of Special

Elements used in an OS Command
('OS Command Injection')

 (CWE-78)

Permissions, Privileges,
and Access Controls
䋨CWE-264䋩

 Improper Authentication
䋨CWE-287䋩

Improper Neutralization of

CRLF Sequences in HTTP
Headers (CWE-113)

Cross-Site Request
Forgery 䋨CSRF䋩
䋨CWE-352䋩

Sensitive Cookie in HTTPS

Session Without 'Secure'
Attribute (CWE-614)

Session Fixation

(CWE-384)

Improper Limitation of a Pathname

to a Restricted Directory ('Path

Traversal') (CWE-22)

Improper Neutralization of Input

During Web Page Generation
('Cross-site Scripting') (CWE-79)

Use of Insufficiently

Random Values (CWE-330)

107

[Produced and Copyrighted by] IPA: Information-technology Promotion Agency, Japan

[iiEditori] Hideaki Kobayashi

[iiAuthori] Yukinobu Nagayasu Naoto Katsumi Hiroshi Tokumaru

 Hiromitsu Takagi National Institute of Advanced Industrial Science and

Technology (AIST)

[iAdvisor] Koji Yoshioka NEC System Technologies, Ltd.

 Tetsushi Tanigawa NEC Corporation

 Tadashi Yamagishi Hitachi Ltd.

 Masashi Fujiwara Hitachi, Ltd.

 Tadashi Kusama Fujitsu Limited

 Noriko Totsuka Fujitsu Limited

 Kosuke Ito LAC: Little eArth Corporation Co., Ltd.

 Kazunao Wakai LAC: Little eArth Corporation Co., Ltd.

 Shingo Otani LAC: Little eArth Corporation Co., Ltd.

 Michio Sonoda Masashi Omori Hiroyuki Itabashi

 Motokuni Soma Shunsuke Taniguchi Yasuo Miyakawa

 Takeshi Hasegawa

*Affiliation omitted for the personnel of IPA

How to Secure Your Website
Approaches to Improve Web Application and Website Security

[iPublicationi] Jan. 31, 2006 First Edition, First Printing

 May 11, 2006 First Edition, Second Printing

 Nov. 1, 2006 Second Edition, First Printing

 Mar. 1, 2007 Second Edition, Second Printing

 Sep. 10, 2007 Second Edition, Third Printing

 Mar. 6, 2008 Third Edition, First Printing

 Aug.1, 2008 Third Edition, Second Printing

 Jan.20, 2010 Forth Edition, First Printing

 Aug.5, 2010 Forth Edition, Second Printing

 Apr.6, 2011 Fifth Edition, First Printing

[Produced and Copyrighted by] IT Security Center, Information-technology Promotion

Agency, Japan

[Collaborated with] Research Center for Information Security, National Institute of

Advanced Industrial Science and Technology

ᇌᘍඥʴ ऴإϼྸਖ਼ᡶೞನ
ẖᵏᵏᵑᵋᵔᵓᵗᵏᴾ

ிʮᣃ૨ʮғஜᬡᡂʚɠႸᵐᵖဪᵖӭᴾ

૨ʮἂἼὊὅἅὊἚἍὅἑὊỼἧỵἋᵏᵔ᨞ᴾ

http://www.ipa.go.jp

ἍỿἷἼἘỵἍὅἑὊ
ᵲᵣᵪᵘᴾᵎᵑᵋᵓᵗᵕᵖᵋᵕᵓᵐᵕᴾᴾᵤᵟᵶᴾᴾᵎᵑᵋᵓᵗᵕᵖᵋᵕᵓᵏᵖᴾ

http://www.ipa.go.jp/security/

IPA ἍỿἷἼἘỵἍὅἑὊỂỊẆኺฎငಅႾỉԓᅆỆؕỀẨẆἅὅἦἷὊἑỸỶἽἋὉɧദỴ

ἁἍἋὉᏤࣱࢊ᧙ᡲऴإỆ᧙ẴỦႆᙸὉᘮܹỉފЈửӖẬ˄ẬềẟộẴẇ

ỸỹἨἧỻὊἲởἳὊἽỂފЈầỂẨộẴẇᛇẲẪỊɦᚡỉἇỶἚửࣂᚁẪẻẰẟẇ

URL: http://www.ipa.go.jp/security/todoke/

ἏἧἚỸỺỴᙌԼᏤࣱࢊ᧙ᡲऴإ

ᵭᵱởἨἻỸἈሁỉἁἻỶỴὅἚɥỉἏἧἚỸ

ỺỴẆỸỹἨἇὊἢሁỉἇὊἢɥỉἏἧἚỸỺ

ỴẆἩἼὅἑởᵧχ ỽὊἛሁỉἏἧἚỸỺỴửኵỚ

ᡂỮẻἡὊἛỸỺỴሁỆݣẴỦᏤࣱࢊửႆᙸ

ẲẺئӳỆފẬЈềẪẻẰẟẇᴾ

ỸỹἨỴἩἼἃὊἉἹὅᏤࣱࢊ᧙ᡲऴإ

ỶὅἑὊἕἚỉỸỹἨἇỶἚễỄỂẆπᘌỆӼ

Ậề੩̓ẴỦẸỉἇỶἚஊỉἇὊἥἋửನ

ẴỦἉἋἘἲỆݣẴỦᏤࣱࢊửႆᙸẲẺئӳỆ

ẬЈềẪẻẰẟẇᴾފ

ऴإἍỿἷἼἘỵỆ᧙ẴỦފЈỆếẟề

ἅὅἦἷὊἑỸỶἽἋऴإ ɧദỴἁἍἋऴإ

ἕἚὁὊἁίỶὅἑὊἕἚẆᾛᾐᾝẆᾦᾐᾝẆἣἏ

ἅὅᡫ̮ễỄὸỆዓẰủẺἅὅἦἷὊἑồỉɧ

ദỴἁἍἋỆợỦᘮܹửӖẬẺئӳỆފẬЈề

ẪẻẰẟẇᴾ

ἅὅἦἷὊἑỸỶἽἋửႆᙸẆộẺỊἅὅ

ἦἷὊἑỸỶἽἋỆज़௨ẲẺئӳỆފẬЈềẪ

ẻẰẟẇᴾ

Ꮴࣱࢊ᧙ᡲऴ්إᡫỉؕஜኵỚᴾẐऴإἍỿἷἼἘỵଔᜩ়ἣὊἚἜὊἉἕἩẑ

ኻᔕ⁁ᴫ

⣀ᒙᕈ㑐ㅪᖱႎㅢ⍮

䊡䊷䉱

ႎ๔䈘䉏䈢

⣀ᒙᕈ㑐ㅪᖱႎ䈱

ౝኈ⏕䊶ᬌ⸽

ฃઃ䊶ಽᨆᯏ㑐

ಽᨆᡰេᯏ㑐

↥✚⎇䈭䈬

Web䉰䉟䊃ㆇ༡⠪

ᬌ⸽䇮ኻ╷ታᣉ

ੱᖱႎ䈱ṳ䈋䈇ᤨ䈲ታ㑐ଥ䉕

⣀ᒙᕈኻ╷ᖱႎ䊘䊷䉺䊦

䉶䉨䊠䊥䊁䉞ኻ╷ផㅴද⼏ળ

㶎JPCERT/CC䋺㒢⽿છਛ㑆ᴺੱ㩷JPCERT 䉮䊷䊂䉞䊈䊷䉲䊢䊮䉶䊮䉺䊷䇮↥✚⎇䋺⁛┙ⴕᴺੱ ↥ᬺᛛⴚ✚ว⎇ⓥᚲ

How to Report Information Security Issues to IPA

Designated by the Ministry of Economy, Trade and Industry, IPA IT Security Center
collects information on the discovery of computer viruses and vulnerabilities, and
the security incidents of virus infection and unauthorized access.

Make a report via web form or email. For more detail, please visit the web site:
URL: http://www.ipa.go.jp/security/todoke/ (Japanese only)

Computer Viruses
When you discover computer viruses
or notice that your computers have
been infected by viruses, please
report to IPA.

Software Vulnerability and
Related Information

When you detect unauthorized access
to your computers via network (e.g. the
Internet, LANs, WANs and PC
communications), please report to IPA.

When you discover vulnerabilities in
client software (e.g. OS and browser),
server software (e.g. web server) and
software embedded into hardware
(e.g. printer and IC card) , please
report to IPA.

Unauthorized Access

Web Application Vulnerability and
Related Information
When you discover vulnerabilities in
systems that provide their customized
services to the public, such as websites,
please report to IPA.

INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN
2-28-8 Honkomagome, Bunkyo-ku, Tokyo 113-6591 JAPAN

http://www.ipa.go.jp/index-e.html

IT SECRITY CENTER
Tel: +81-3-5978-7527 FAX: +81-3-5978-7518

http://www.ipa.go.jp/security/english/

Framework for Handling Vulnerability-Related Information
䌾 Information Security Early Warning Partnership 䌾

JPCERT/CC: Japan Computer Emergency Response Team Coordination Center, AIST: National Institute of Advanced Industrial Science and technology

	Contents
	Preface
	Organization of This Book
	Intended Reader
	What is Revised in the 5th Edition
	Fixing Vulnerabilities
	－Fundamental Solution and Mitigation Measure－

	1. Web Application Security Implementation
	1.1 SQL Injection
	1.2 OS Command Injection
	1.3 Unchecked Path Parameter / Directory Traversal
	1.4 Improper Session Management
	1.5 Cross-Site Scripting
	1.5.1 Measures for Web Applications That Do Not Permit HTML Text Input
	1.5.2 Measures for Web Applications That Permit HTML text Input
	1.5.3 Measures common to all web applications
	1.6 CSRF (Cross-Site Request Forgery)
	1.7 HTTP Header Injection
	1.8 Mail Header Injection
	1.9 Lack of Authentication and Authorization
	1.9.1 Lack of Authentication
	1.9.2 Lack of Authorization Control

	2. Approaches to Improve Website Security
	2.1 Secure Web Server
	2.2 Configure DNS Security
	2.3 Protect against Network Sniffing
	2.4 Secure Password
	2.5 Mitigate Phishing Attacks
	2.6 Protect Web Applications with WAF
	2.7 Secure Mobile Websites
	2.7.1 Issues with Session Management
	2.7.2 Issues with Cross-Site Scripting
	2.7.3 Issues with Mobile ID
	2.7.4 Issues with Authentication Information

	3. Case Studies
	3.1 SQL Injection
	3.2 OS Command Injection
	3.3 Unchecked Path Parameters
	3.4 Improper Session Management
	3.5 Cross-Site Scripting
	3.5.1 Countermeasures Unimplemented
	3.5.2 Insufficient Countermeasures
	3.5.3 Misguided Countermeasures
	3.6 CSRF (Cross-Site Request Forgery)
	3.7 HTTP Header Injection
	3.8 Mail Header Injection

	Postface
	References
	Terminology
	Checklist
	CWE Mapping Table

