UTIMACO Quantum Computer Age Security

CHUA Zhong Han Pre-Sales Engineer (ASEAN) August 5, 2025

- 1 Tech trends & market size
- 2 Short intro: Quantum computer
- Post Quantum Computer Age Security
 - PQC
 - Crypto agility
 - QKD
 - Quantum randomness
- 4 Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST Timeline
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready

9 Use case

Tech trends influencing UTIMACO's products & solutions – Quantum Computer Age Security influences most other technology trends

Page 3

Post quantum computer age security – Estimated market size

^{*} https://thequantuminsider.com/2022/02/02/the-quantum-insider-report-forecasts-quantum-security-market-worth-10-billion-by-2030/

- **Tech trends & market size**
- **Short intro: Quantum computer**
- **Post Quantum Computer Age Security**
 - **PQC**
 - **Crypto agility**
 - QKD
 - **Quantum randomness**
- Addressing the Quantum Threats to the PKI system and application
- **Utimaco strategy and research involvement**
- **Industry Organization and Standard**
- **CSNA 2.0 and NIST Timeline**
- u.Trust GP HSM, PQC Ready and ESKM, QKD Ready
- **Use case**

Quantum Computers and what they can do (1/2)

Quantum Computers and what they can do (2/2)

Traditional computer – 1 state at a time

Traditional 1 and 0 as determined states

Either 1 or 0		
2 Bits: 4	3 Bits: 8	
00	000	
01	001	
10	010	
11	011	
	100	
	101	
	110	
	111	

Quantum Computer – all states at a time

Various states in parallel			
2 qBits: 4	3 qBits: 8		
00	000		
01	001		
10	010		
11	011		
	100		
	101		
	110		
	111		

Qubits interact with each other which improves the processing speed of quantum computers.

Qubits exist in more than one state or location simultaneously.

Mega Trend: Quantum Computer

Problem Statement

- Shor's Algorithm
 breaks asymmetric crypto
 - Breaks RSA by quickly factoring large numbers
 - Breaks Elliptic Curve
 Cryptography and Diffie-Hellman by solving the discrete log problem
- Grover's Algorithm
 weakens symmetric crypto
 - Square-root speedup on search algorithms
 - Weakens symmetric encryption and hashing by 50%

Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack
	RSA 2048	112		
Aovementrio	RSA 3072	128	0	Shor's Algorithm
Asymmetric	ECC 256	128	U	
	ECC 521	256		
Symmetric	AES 128	128	64	Grover's
Symmetric	AES 256	256	128	Algorithm

Tech trends & market size

Short intro: Quantum computer

Post Quantum Computer Age Security

PQC

Crypto agility

QKD

Quantum randomness

- Addressing the Quantum Threats to the PKI system and application
- 5 **Utimaco strategy and research involvement**
- **Industry Organization and Standard**
- **CSNA 2.0 and NIST Timeline**
- u.Trust GP HSM, PQC Ready and ESKM, QKD Ready

Use case

Quantum Computer Age Security – Post Quantum Cryptography

Challenges Quantum Computers will bring without PQC

How much time is left for getting Quantum Computer Age secure?

Mosca theorem

- ◆ X = Number of years to protect specific data
- Y = number of years needed to convert to Quantum Computer Age security
- **Z** = number of years until Quantum Computer can break today's crypto

What algorithms are available to address digital signatures and KEM?

Your choice of algorithms

Key Encapsulation / Encryption

Diaita	Cianaturas
плана	l Signatures
Digita	l Olgitatai co

Algorithm	Method	Status	Recommendation	Algorithm	Method	Status	Recommendation
ML-KEM	Lattice-based	NIST Standard published: FIPS-203	ML-KEM-1024 for all classification levels	ML-DSA	Lattice-based	NIST Standard published: FIPS-204	ML-DSA-87 for all classification levels
ндс	Code-based	NIST Selected Algorithm to be Standardized	N/A	SLH-DSA	Hash-based	NIST Standard published: FIPS-205	N/A
Classic Ma-Flinas	a de bourd	NIST POC Standardization		FALCON	Lattice-based	NIST Selected Algorithm to be standardized	N/A
Classic McEliece	Code-based	Round 4	N/A	LMS / HSS	Stateful Hash-based	Standardized NIST SP 800-208	All parameters approved for all classification levels. LMS SHAZ56/192 is recommended
Bike	Code-based	NIST PQC Standardization Round 4	N/A XMSS / XMSS-MT	Stateful Hash-based	Standardized NIST SP 800-208	All parameters approved for all classification levels	
Frodo-KEM	Lattice-based	Not standardized Recommended by German Federal Office for Information Security	N/A	SHA family	Hash function	Standardized FIPS PUB 180-4	Use SHA-384 or SHA-512 for all classification levels

Take away: There is no magic bullet!

You need to consider which cryptographic use cases you have in your organization and test which PQC algorithm fulfills this use case in your environment. **Most of the algorithms will not be a 1:1 replacement.**

UTIMACO · Aachen, Germany · © 2022 utimaco.com STRICTLY CONFIDENTIAL Page 13

Quantum Computer Age Security - Crypto agility

Key considerations to achieve crypto agility

Different Key Lengths

Different Algorithms Digital Signature Dilithium Falcon SPHINCS+

Flexible Interface

Variable parameters

Different message sizes

Fields for additional information

Quantum Computer Age Security – Quantum randomness

Software Random Number Generator

Often pseudo random

Randomness created

by software

Partly HSM implementation opportunity

Hardware Random Number Generator

- Randomness created by atomic/ subatomic physical phenomenon
- Can be true random generators
- Examples: radioactive decay, thermal noise
- Quantum Random Number Generator

utimaco.com

- Randomness created by measuring quantum phenomenon
- Special case of true random number generators
- Examples: entangled photons

Quantum Computer Age Security – Quantum Key Distribution

QKD Use Case

Solutions

Highly Secure Key Generation

- Randomness by entangled photons
 - Eavesdropping can be detected
- Source must not be trusted

 Longer transmission distances when send from satellite

System set up

Due to limited transmission distances, HSMs and Key Management
 Systems for endpoints and transmission needed

1 Tech trends & market size

2 Short intro: Quantum computer

Post Quantum Computer Age Security PQC Crypto agility QKD Quantum randomness

- 4 Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST Timeline
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready

9 Use case

Another example where PQC is critical – PKI/ Certificates

Hybrid Algorithms – Combine PQC and classical crypto algorithms

Definition of hybrid methods

- Hybrid use of cryptography allows to combine classical and PQC algorithms
- Can be used for deriving hybrid keys or digital signatures
- Should either of the two algorithms show weaknesses, there is still the other algorithm to rely upon

Method 1 Execution of classical and post quantum key exchange (or use of pre-shared secrets Combination of both results in Key Derivation Function (KDF) **Additional** parameter A classical key Exchange A PQ key **KDF** Hybrid Key exchange Pre-shared keys

Method 2

 For signature schemes, signatures can be concatenated and both signatures need to be valid

- 1 Tech trends & market size
- 2 Short intro: Quantum computer
- Post Quantum Computer Age Security PQC Crypto agility QKD Quantum randomness
- 4 Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST Timeline
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready
- 9 Use case

STRICTLY CONFIDENTIAL

Summary: Utimaco to position in 7 areas to address Quantum Computer Age Security holistically

Post Quantum Hybrid Use of Quantum Key Quantum **Crypto Agility Algorithms** Cryptography Distribution Entropy [5] 5 2 63 E2 ES

Research Co-operations, Funded projects, Standardization

utimaco.com

Consultancy/ migration support

Q-Fiber & Q-net-Q

ISQKMS

Project

- German wide QKD network via satellite
- Prevent side channel attacks

 Development of Quantum Key Mgt. System Utimaco share

Secure processing of keys in HSM

Status

rocessing • Waiting for approval

 Secure processing of keys in HSM Running

QCNTF

 QKD network specification for Singapore

 Utimaco specifying key mgt. layer Completed

PQC

QKD

QRCrypto

 PQC systems for different industries (e.g. space,

 HSM/ Key Mgt. support for various use cases Application in finalization

- **Tech trends & market size**
- **Short intro: Quantum computer**
- **Post Quantum Computer Age Security PQC Crypto agility** QKD **Quantum randomness**
- Addressing the Quantum Threats to the PKI system and application
- **Utimaco strategy and research involvement**
- **Industry Organization and Standard**
- **CSNA 2.0 and NIST Timeline**
- u.Trust GP HSM, PQC Ready and ESKM, QKD Ready
- **Use case**

Industry Organizations and Standardization

Shaping Tomorrow's Cryptographic World

PQC Consortium: Work Streams Interoperability, Discovery

X9 Post Quantum Cryptography Committee

ETSI Quantum-Safe Cryptography (QSC) Working Group

Federal Office for Information Security in Germany

White House Roundtable on PQC, August 2024

ICMC, September 2023

PQC Working Groups

PQC Consortium: PQC Workstream

White House Roundtable, January 2024

And further

Playing a key role in shaping the future landscape of Post Quantum Cryptography

PKI
Consortium

Post-Quantum Cryptography Conference, November 2023

Utimaco awarded as Best Practice in PQC

FROST & SULLIVAN

2024 Frost & Sullivan

*Competitive Strategy Leadership Award

The Global Post-Quantum Cryptography Industry
Excellence in Best Practices

"Utimaco's expertise in deploying HSMs both for general purpose and specialized use cases translates well to the post-quantum era, which requires high levels of customization and adaptability. An integral part of the migration to PQC as a supplier of roots of trust, Utimaco also strategically positions itself as a wide-ranging partner for organizations in this monumental task, providing consultancy services, quantum-readiness assessments, and crypto-agility solutions."

- Özgün Pelite, Sr. Industry Analyst

- 1 Tech trends & market size
- 2 Short intro: Quantum computer
- Post Quantum Computer Age Security PQC Crypto agility QKD Quantum randomness
- 4 Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST <u>Timeline</u>
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready
- 9 Use case

RSA-2048 is only considered secure until 2030.

(guidance in NIST SP 800-78-5)

NIST IR 8547 Transition to PQC Standards

(Published November 2024)

Table 2: Quantum-vulnera	able di	igital sig	nature a	lgorithms
--------------------------	---------	------------	----------	-----------

Digital Signature Algorithm Family	Parameters	Transition
	112 bits of security strength	Deprecated after 2030
ECDSA [FIPS186]	112 bits of security strength	Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035
EdDSA [FIPS186]	≥ 128 bits of security strength	Disallowed after 2035
	112 bits of security strength	Deprecated after 2030
RSA [FIPS186]		Disallowed after 2035
[, ,, 5255]	≥ 128 bits of security strength	Disallowed after 2035

Regulatory Initiatives Around the World on PQC

Country	PQC Algorithms Under Consideration	Published Guidance	Timeline (summary)
Australia	NIST	ACSC-2023 ACSC-2024	Start planning for transition to quantum resistant cryprography.
Canada	NIST	CAN-01 CAN-02	Start planning, wait for standards. CSE is updating detailed PQC guidance.
China	China Specific	CAICT-2023	Start Planning
Czech Republic	NIST (but not restricted to)	NÚKIB-2023	Migrate by 2027 (key establishment, encryption). As soon as possible for firmware & software signing.
European Union	NIST Plan to select PQC EU algorithms	ENISA-2022 EC-2024	Start planning Define a coordinated PQC roadmap for Member States by 2026
France	NIST (but not restricted to)	ANSSI (2022, 2023)	Start planning; Transition from 2024
Germany	NIST (but not restricted to)	BSI-2021 BSI-2023 BSI-2024	Start planning
Italy	NIST	CAN-2024	
Japan	Monitoring NIST	JAPAN-2022	Start planning; initial timeline. CRYPTREC is preparing detailed PQC guidelines.
Netherlands	ML-KEM, Classic McEliece and FrodoKEM recommended in hybrid mode for TLS.	NL-2022 AIVD-2023 NL-2024	Draft action plan with timeframes
New Zealand	NIST	NZISM-2024	Start planning. Transition from 2026-27.
Singapore	Monitoring NIST	SG-2022 MAS-2024	No timeline available. Financial services firms required to prepare plan.
South Korea	КрqС	MSIT (2022) MSIT (2024)	Start competition First round (Nov.'22-Nov.'23). PQC Roadmap published
Spain	NIST and FrodoKEM.	CCN.ES-2022	Four phase approach today to post-2030.
United Kingdom	NIST	NCSC-2024a NCSC-2024b	Start planning; use only standards in production. NCSC is preparing detailed PQC guidance.
United States	NIST	NSM-10 CISA-2021 CNSA20 HR7375 CISA-2023 CISA-2024	Implement 2023-2033

*https://www.gsma.com/newsroom/post-quantum-government-initiatives-by-country-and-region/

The CNSA 2.0 Algorithm Suite

CNSA 2.0 Requirements and Timeline

Software and firmware signing

- LMS
- XMSS

General quantum-resistant public key algorithms

- Key-establishment: CRYSTALS-Kyber (ML-KEM)
- Digital signatures: CRYSTALS-Dilithium (ML-DSA)

Symmetric key algorithms

- AES
- SHA

CNSA Suite 2.0 default and preferred

Exclusive use of CNSA Suite 2.0

- 1 Tech trends & market size
- 2 Short intro: Quantum computer
- Post Quantum Computer Age Security PQC Crypto agility QKD Quantum randomness
- Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST Timeline
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready

9 Use case

u.trust General Purpose HSM Se-Series

The Cloud-inspired, Next Generation HSM

Superior Performance ◆ Multi-Tenant ◆ PQC-ready FIPS-certified ◆ SDK ◆ Free Simulator

Up to 40,000 RSA 2K operation / s

Multi-tenancy with up to 31 containers

Designed crypto agile

FIPS 140-2 Level 3 certified (FIPS 140-3 in progress)

SDK for custom implementations

Free, fully functional simulator

- **General Purpose HSM** (e.g. FIPS / Non-FIPS)
- **Payment HSM**
- **SDK customized**
- **Blockchain**
- **PQC**

Utimaco's PQC Solution

Prepared for Quantum-secure Use Cases – Already in Use Today

ESKM Secures the Keys at Different Levels AND Secures the Backup

Securing the Access to Data and Information at Different Levels

UTIMACO ESKM - Product Overview

Secure

- Meet NIST standards, validated to FIPS 140-2 Level 1-4, Common Criteria
- Encrypts keys in transit and at-rest
- Certificate-based authentication and built-in CA

Interoperable

- Support OASIS KMIP
 (Key Management
 Interoperability
 Protocol)
- Support RESTful interface
- No vendor lock-in
- Custom integrations using SDK

Available

- Active-Active cluster with thousands of nodes
- Automatic key replication, client failover
- Highly redundant hardware

Scalable

- Geographically separated clusters across datacenters
- Supports thousands of clients, and millions of keys

Managable

- Configuration and keys replicated across cluster automatically
- Hands-off administration, automated backups and audit logging

ESKM – QKD Integration

Quantum Key Distribution (QKD)

- ETSI GS QKD 014 V1.1.1 (2019-02) titled "Quantum Key Distribution (QKD) Protocol and data format of REST-based key delivery API"
 - Three API commands
 - Get Status
 - Get Key
 - Get Key IDs
 - API Data format for those 3 API commands
- These REST APIs enable an SAE to request & get keys from a KME within <u>THE SAME</u> Trusted Node (TN)

- 1 Tech trends & market size
- 2 Short intro: Quantum computer
- Post Quantum Computer Age Security PQC Crypto agility QKD Quantum randomness
- 4 Addressing the Quantum Threats to the PKI system and application
- 5 Utimaco strategy and research involvement
- 6 Industry Organization and Standard
- 7 CSNA 2.0 and NIST Timeline
- 8 u.Trust GP HSM, PQC Ready and ESKM, QKD Ready

9 Use case

Securing Satellite Communication with XMSS and Kyber

Page 40

Use Case: Digital Signatures to Secure Satellite Communication

Quantum-proof digital signatures and encryption for long-term secure satellite communication

Project: Securing **Satellite Communication**

➡ Providing fast, affordable broadband to unserved and underserved communities around the world

CCSDS Space Data Link Security Protocol requires cryptographic algorithms for

- Authentication
- Encryption
- Authenticated encryption

Algorithms and methods used

- XMSS incl. state handling (signatures)
- CRYSTALS-Kyber (key encapsulation mechanism)

Solution:

u.trust General Purpose HSM Se-Series upgraded with Quantum Protect + SDK

Secure Updates for Embedded Devices

Use Case: Key Injection for Long-term Secure Firmware Updates

Securing firmware updates for Chips using PQC

Algorithms

- CRYSTALS-Dilithium (signatures)
- CRYSTALS-Kyber (encryption)

Methods used

- Generation of CRYSTALS-Dilithium key pair in the HSM
- Cryptographic key injection (Public Dilithium key) during chip manufacturing
- Signature verification in the field
- Confidentiality achieved by encrypting with CRYSTALS-Kyber

Challenges solved

- Memory space on the chips
- Protection against side channel attacks

STRICTLY CONFIDENTIAL

UTIMACO GmbH

Germanusstraße 4 52080 Aachen Germany

Phone +49 241 1696-0 Web

E-Mail

https://hsm.utimaco.com hsm@utimaco.com

UTIMACO Inc.

900 East Hamilton Avenue Campbell, CA-95008 United States of America

Web E-Mail

Phone +1 (844) UTI-MACO https://hsm.utimaco.com hsm@utimaco.com

Copyright © 2022 - UTIMACO GmbH