

PQC-Enabled Security Dongle: Hybrid FIDO2 & X.509 Certificate Solution

Mr. Derek Chen, Technical Manager Industrial Technology Research Institute (ITRI) E-mail: derekchen@itri.org.tw

2025/8/5

About ITRI (Industrial Technology Research Institute)

"Innovate for industry. Create value for society."

Who We Are

- •Founded in 1973, under Taiwan's Ministry of Economic Affairs
- One of Asia's leading applied technology R&D institutes
- Incubated top global companies like TSMC

Core Expertise

- •ICT | Semiconductors | Smart Manufacturing
- Green Tech | Biomedical | AI & Smart Living
- ➤ Driving innovation across six major tech sectors

Our Role

- Bridge lab to market
- Support SMEs' digital transformation
- Nurture startups and innovation
- Partner in national tech programs (e.g. Net-Zero, Cybersecurity)

IBM Presents '2029 Million-Qubits' Roadmap

©Industrial Technology Research Institute. All rights reserved.

Scaling Qubits with Modular Architecture

Moore's Law: 2035 to See Million-Qubit Breakthrough

Qubit growth estimates, according to Moore's Law

Classical Algorithms Challenged: Breaking Time Reimagined

Algorithm	Туре	Size of Quantum Computer	Time Required
DL with NIST P-256	Public key	6.8 x 10 ⁷ Qubits (68M)	1 Day
RSA 3072	Public key	6.4 x 10 ⁸ Qubits (640M)	1 Day
AES-128	Symmetric	10 ³⁰ Qubits (1G)	1 Year

Shor's algorithm
Grover's algorithm

Source:

A Framework for Migrating to Post-Quantum Cryptography: Security Dependency Analysis and Case Studies (IEEE)

Harvest Now, Decrypt Later (HNDL)

Global companies are now involved in building quantum computing solutions—and, of course, even 'hacker applications' are no exception!

source: serokell.io, thequantuminsider

Progress of NIST PQC Standardization

PQC Algorithm	ML-KEM (CRYSTALS-Kyber)	ML-DSA (CRYSTALS-Dilithium)	SLH-DSA (SPHINCS+)	FN-DSA (Falcon)	NEW HQC (Hamming Quasi-Cyclic)
FIPS Standard	FIPS 203	FIPS 204	FIPS 205	FIPS 206 (Delayed)	Planned
Туре	Key Encapsulation	Digital Signature	Digital Signature	Digital Signature	Key Encapsulation
Cryptography	Lattice-based	Lattice-based	Hash-based	Lattice-based	Code-based
Key Characteristics	 NIST's primary KEM standard Good cross-platform performance Relatively compact key sizes; fast operations Efficient in both encryption and decryption Suitable for embedded and IoT devices 	 NIST's primary digital signature standard Moderate key/signature sizes; fast signing and verification Good security-performance balance Suitable for high-performance and low-resource applications 	 Alternate signature standard Based on hash functions, highly reliable security Large signature size, spatially limited Stateless and security-stable 	 Small signatures and public keys Low bandwidth, fast verification Complex key/signature generation (may involve floating-point ops) Complex to implement; needs further validation for stability and sidechannel resilience 	 Candidate for code-based encryption High computational overhead; best suited for high-resource environments Large key sizes; unsuitable for low-power devices
Standardization Timeline	Finalized in August 2024			Final draft of FIPS 206 expected post-2025	Draft expected ~2026 Final ~2027 (tentative)

Challenges of PQC Applications R&D

Lowering the Barriers: PQC Common Platform

- ① Deployment of PQC on Both Server and Client → Provides a standard RTL circuit interface for integrating complete PQC algorithms or partial accelerator components.
- Complexity of PQC Security Architecture → Offers PQC Core Algorithm Platform with NIST standardized algorithms to facilitate digital logic design verification.
- 3 Challenges of PQC Algorithm Libraries > Provides corresponding firmware algorithm libraries and APIs for easy industry application integration.
- 4 High Development Costs of ASIC Chips→ Provides FPGA verification environment to assist in the feasibility validation of silicon IP and supports specialized chip product design.

10

PQC Common Platform and Application Use Cases

The PQC Common Platform Solution includes four key components: PQC Silicon Intellectual Property, PQC Software and Firmware, PQC Chip Design and Verification Environment, and PQC Application Reference Examples.

PQC Application Reference Examples. (Identification • Digital Signature)

PQC Chip Common Platform for Product Design and Verification Environment (FPGA)

PQC IP

ML-KEM(Kyber) \
ML-DSA(Dilithium) \
SLH-DSA(SPHINCS+)

PQC SW/FW ARM · RISC-V · X86 · ...

All of the above are ready for collaboration

Identification

PQC IP & PQC SW/FW

Digital Signature

PQC Chip Common Platform

PQC Applications (Identification • Digital Signature)

ITRI Identity Authentication Solution

ITRI E-Signature Service Solution

Collaborative Partner

Product Item	Company Name
PQC Hybrid PIV Token	AuthenTrend Technology Inc
PQC HSM	CHT Security Co., Ltd.
PQC Data Diode	Zyell Solutions Corporation

Authentication and e-Signature Services

ITRI E-Signature Server (Fast Agree)

E-Signature System: Registration Process

Physical KYC for Customer Verification

Secure Digital Identity Enrollment and Certificate Provisioning

After completing dual ID verification, the user registers with "Fast Agree", obtains a digital certificate that issues by CA, and securely stores the user's private key and certificate in the PQC Hybrid PIV Dongle.

Dual Identification

(ID Card, Drive Card, ...)

Document

E-Signature System: Signing Process

support (ML-DSA-65 and ECC-P256 Signature)

Signing

Signature Time Algorithm (ms) ML-DSA-65 830.04 **ECC-P256** 658.47

PQC Hybrid PIV Dongle (including FIDO2 & PKI)

E-Signature System: Two Verification Process

Download signed document

Upload signed document to verify with web-based verification tools

Note1: Signed using ML-DSA

Open File with PDF Reader

Note2 Signed using traditional cryptographic algorithms (ECC-P256)

Users can verify signed documents using PDF Reader, or through the web-based verification tool provided within Fast Agree.

web-based verification tools

PDF reader verification

ITRI PQC E-Signature Solution Demo

Using the PQC-Enabled Security Dongle

Derek Chen Technical Manager

Application Integration Technology Dept.

Division for Infra & Cyber Security
Information and Communications Research Laboratories

9F., No.315, Songjiang Rd., Zhongshan Dist.,

Taipei City 104070, Taiwan, R.O.C. Tel: +886 2 2515 9665 ext. 161

Mobile: +886 973 301838 E-mail: derekchen@itri.org.tw

www.itri.org.tw

THANKS FOR YOUR LISTENING

Inquiries on PQC, e-signatures, or PIV dongles are welcome.

